Comment on "Anomalously Large Gap Anisotropy in the a-b-Plane of $Bi_2Sr_2CaCu_2O_8+\delta$ "

Angle resolved photoemission on three samples of $Bi₂Sr₂CaCu₂O_{8+\delta}$ (Bi2212) was analyzed by Shen *et al.* [1] to obtain the dependence of the energy gap in the superconductor as a function of angular points around the Fermi surface. In contrast to previous reports on other superconductors [2], they found the gap to be very anisotropic. They assert that their data are only compatible with the d-wave order parameter in the superconductor, and "Our data are qualitatively incompatible with the extended s-wave scenario." Here we wish to challenge the last statement. A simple analysis shows that an s-wave order parameter fits the gap anisotropy better than the d wave which they advocate.

For a d-wave superconductor on a square lattice in two dimensions, the order parameter is usually expressed as

$$
\Delta_d(\phi) = \Delta_{d0}[\cos(k_x a) - \cos(k_y a)], \qquad (1)
$$

where the angular dependence results from $k_x = k \cos(\phi)$ and $k_y = k \sin(\phi)$. The photoemission measurements give $|\Delta(\phi)|$. Earlier we showed [3,4] that the s-wave order parameter has the general form on a square lattice of

$$
\Delta_s(\phi) = \sum_l \Delta_{4l} \cos(4l\phi) \,. \tag{2}
$$

The wide scatter in the data points prevents detailed fitting, so we simplify this to $\Delta_s = \Delta_0 + \Delta_4 \cos(4\phi)$ which includes the first anisotropic term.

Experimental data was reported in Ref. [1] for three samples. They showed the data plotted vs the angular dependence in (1). Our Fig. ¹ shows their data from sample 2 plotted vs $cos(4\phi)$. The fit is better than their plot for d-wave superconductivity. The quality of fit can be given by a least squared fit according to the formula

$$
R_{s,d} = \frac{1}{N} \sum_{i}^{N} [\Delta_{\exp}(i) - \Delta_{s,d}(\phi_i)]^2,
$$
 (3)

FIG. 1. Energy gap vs $cos(4\phi)$ for the data of sample 2 in Ref. [1].

TABLE I. Least squared fits to the experimental points for s- and d-wave superconductivity.

Sample		2	
\boldsymbol{N}	4	8	10
s wave			
Δ_0 (meV)	5.2	14.5	11.8
Δ_4 (meV)	4.8	4.5	6.6
R_{s}	2.9	4.8	5.8
d wave			
Δ_{d0} (meV)	11.6	19.6	20.4
R_d	2.3	43.1	14.0

where N is the number of data points and Δ_{exp} are the experimental points of gap vs angle. Table I shows R values for the two models. For sample ¹ the fits are comparable, but for the other two samples the fit for the s wave is far better. The large values of R_d for sample 2 are difficult to reconcile with the d-wave model. Overall, the s -wave gap anisotropy fits the data better than the d wave model.

Our fits give a consistent value of $\Delta_4 = 5 \pm 1$ meV for the anisotropic s-wave gap in Bi2212. The isotropic part Δ_0 varies among the three samples, because of the wide scatter in the experimental data.

The experimentalists remark that their data is time dependent, and the d-wave model fits better on fresh samples. However, since the aged samples are still superconducting, and must have an order parameter, the s-wave model fits both the fresh and aged samples. We conclude that the experimental data fits well the model of anisotropic s-wave superconductivity, which is contrary to the assertion in Ref. [1].

We acknowledge research support from the University of Tennessee and from the U.S. Department of Energy through Contract No. DE-AC05-84OR21400 administered by Martin Marietta Energy Systems.

G. D. Mahan

Department of Physics, The University of Tennessee Knoxville, Tennessee 37996-1501 and Solid State Division, Oak Ridge National Laboratory

P.O. Box 2008, Oak Ridge, Tennessee 37831-6032

Received 30 August 1993

PACS numbers: 79.60.Bm, 73.20.Dx, 74.72.Hs

[1] Z.-X. Shen et al., Phys. Rev. Lett. 70, 1553 (1993).

[2] C. G. Olson et al., Science 245, 731 (1989).

[3] G. D. Mahan, Phys. Rev. B 40, 11 317 (1989).

[4] G. D. Mahan, Phys. Rev. B 48, 16557 (1993).

0031-9007/93/71 (25)/4277(1) \$06.00 1993 The American Physical Society