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Electron Spectral Function of an Interacting Two Dimensional Electron Gas
in a Strong Magnetic Field
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The electron spectral function of a 20 interacting electron system in a strong magnetic field is found
to exhibit an energy gap at arbitrary filling fractions. In general, this gap is larger than the energy cost
associated with a charge e excitation. At v = —, a numerical estimate of the tunneling gap is
A~„„=(0.3+ 0.1)e /eltt for the Coulomb interaction.

PACS numbers: 73.40.Hm, 73.40.Gk

Two dimensional electron systems in a strong magnetic
field exhibit many interesting properties [1-3]. In this
work, we investigate the electron spectral function and
show that it can have an energy gap larger than that of
the charge e excitations above the ground state. In par-
ticular, the gap in the spectral function can be finite even
for compressible states, as has been observed in recent
tunneling experiments [4,5]. The tunneling gap appears
to be a general feature of 2D electron systems in strong
magnetic fields regardless of whether the electrons are in

a compressible or incompressible state. The gap in the
electron spectral function is a pure interaction eA'ect and,
in general, depends on the electron density. Other ex-
planations of the tunneling gap relying on the picture of a
Fermi liquid theory for the v= 2 state and the classical
Coulomb gap can be found in Refs. [6,7].

We first present a simple argument to show that the
energy gap in the electron spectral function and that as-
sociated with the charge e excitations are in general
diferent due to a selection rule. For simplicity, we con-
sider the electron system on a 2D sphere of radius R [8].
The results for the planar geometry should be obtained
by taking properly the radius R to the infinity limit. Let
Np denote the number of the magnetic flux quanta pierc-
ing the sphere and N, the total number of electrons. We
assume that all electrons are spin polarized, that the
filling fraction v ( 1 (i.e. , N, & Nt, + I ), and that the cy-
clotron frequency co, is the largest energy scale in the
problem. By definition, the energy gap for a charge e ex-
citation is given by

Ii =Eo(N +1)+Eo(N I ) 2Eo(lV ),
where Eo(N, ) is the ground state energy of the N, elec-
tron system. If h, is finite in the thermodynamic limit, the
electron system is in an incompressible state; otherwise
the electrons form a compressible liquid.

The electron system on the sphere has an SO(3) rota-
tion symmetry. The electron states can be labeled by the
angular momentum quantum numbers L and L, . The
single electron states in the first Landau level form a rep-
resentation of the rotation group with angular momentum
L =Nt/2 [8]. Let ct (m = —Nt/2, . . . , Nt/2) denote the
electron operator that creates an electron in the first Lan-

dau level with L, =m. Let us insert an electron at the
north pole with ctvp2=c (0). The electron spectral func-
tion can be written as

f(e) =f, (e)+fh ( e), —

f.(e) =-Z I(n I c'(0) I0) I
'&(e. —e),

n

ft, (e) =g ~(n~c(0)( 0)( 28( e„—e),

(2)

where E(N„L) is the lowest energy for states with N,
electrons and total angular momentum L. h, t„„ is the en-
ergy gap that is directly measured in the tunneling exper-
iments [4,5]. Comparing (I) and (3), we conclude that,
for a uniform ground state, the energy gap for charge e
excitations and that occurring in the electron spectral
function can be diAerent.

For real systems, the gap in the spectral function can
be much larger than the gap for the charge e excitations.
Let us consider the v=m/(2m+ I) state as an example.
The electron operator creates a state with m charge e/m
quasiparticles located at the same point. Such a state is
definitely not the lowest energy state and has angular
momentum L =Nt/2. Therefore the electron spectral
function has a substantial overlap with this high energy
state. The energy of the latter is of the order of the
Coulomb energy e /ela, where ltt is the magnetic length.
Because of the conservation of the angular momentum, a
localized electron can hardly decay into separated quasi-
particles. Thus we expect the electron spectral function
to exhibit a gaplike structure. This gap should be of the

where ~0) is the ground state and e„denotes the energy of
the eigenstate ~n) measured from the ground state ener-
gy. If the ground state is uniform (i.e., it carries zero an-
gular momentum), then c(0)~0) and ct(0) ~0) carry angu-
lar momentum L =Nt/2. Only the excited states with an-
gular momentum L =Nt/2 can have finite overlap with
the states created by the electron operators. Therefore,
the energy gap in the electron spectral function is given
by

l3iun =E (Ne+ I,Nt/2) + E (Ne I,Nt/2) 2Eo(Ne, 0),
(3)
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order of the Coulomb energy. According to the above
picture, the gap should not be sensitive to m. In particu-
lar, we expect the gap to remain of the order of the
Coulomb energy in the limit rn ~, in which case the
v=m/(2m+ I ) FQH state approaches the —,

' metallic
state.

To confirm the existence of the gap and to understand
the dependence of the tunneling gap on the filling frac-
tion, the shape of the spectral function, etc. , we evaluated
numerically the electron spectral function on a sphere for
finite systems [9]. The Coulomb interaction is param-
etrized by the pseudopotentials [8] which, for simplicity,
are chosen to be those of the planar geometry. The ener-
gies are measured in units e /t.'la and the background
charge is not included. The spectral functions are calcu-
lated by the method of Ref. [10]. Note that we mainly
concentrate here on the spectral functions for singlet
ground states in order to avoid large finite size eff'ects.

The spectral functions of the electron and the hole are
shown in Fig. 1 for N, =9,N& =16 (v= 2 ). In the
language of the "Fermi" liquid theory of the 2 state,
the nine pseudoparticles form a closed shell filling of
L =0, 1,2 states on the sphere. The numerical results il-
lustrate the angular momentum selection rule discussed
above, as only states with L =N&/2=8 have a finite ma-
trix element with states created by electron operators c
and c

In the case where an electron is added to the system,
most spectral weight is concentrated on the lowest excited
state (with L =N&/2 =8). The density profiles of this low

lying state (with L, =8) are plotted in Fig. 2 as a func-
tion of the polar angle 0. We also show a density profile
of the state created by ct(0). We find that the above two
states are similar and it is consistent with a single peak

Spectral Function
I

structure. For the hole case, the spectral function has
two main peaks at low energies. Correspondingly, the
density profile of this hole state is more complex.

Here we comment on the case L &0 where the ground
state is degenerate. Each degenerate ground state has an
inhomogeneous charge density. We investigated numeri-
cally several L&0 ground states and calculated the spec-
tral functions for each degenerate L, state and for the
average spectral function by taking the trace over the de-
generate states. As expected, the charge density of the
L, =L (L, = —L) state is higher (lower) on the north
hemisphere. Therefore the energy cost to insert a hole
(electron) at the north pole is less than that associated
with the insertion of a hole (electron) into the uniform
singlet state. As a consequence, the onset of the tunnel-
ing gap in the spectral function is reduced substantially.
However, we infer from the study of finite systems with
nearly half filling that the energy gap between the dom-
inant peaks agrees within ~ 10% with the value calculat-
ed in the system of closest size with L =0. The degenera-
cy of the ground state in a finite size system results from
commensurability eA'ects (e.g. , between the number of
electrons and the underlying shell structure). Both the
degeneracy and the charge inhomogeneity of the ground
state suggest the occurrence of defects due to the incom-
mensurability. The electron tunneling into the defect
definitely lowers the onset of the energy gap as we have
seen in our calculation. To estimate the tunneling gap in

the thermodynamic limit, we restrict ourselves to the
L =0 state as we assume that the ground state is unique
and homogeneous in this limit.

Next, we calculated A,„„(N„N~) [for (N„N&) with
singlet ground state]. h&„„(N„N&) is plotted as a func-
tion of N, /(N&+ 1) [in the thermodynamic limit N, /
(N&+ I ) v]. The results are shown as circles in Fig. 3.
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FIG. 1. Spectral functions for electrons (higher energy part)
and holes (lower energy part) for N, =9, N&=16, v= f . Ener-

gy is measured from the highest energy state of the hole state.
The lower part of the figure shows energies of the final states
classified by the angular momentum.
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FIG. 2. Solid line: density profile of the final state, A'&=16,
N, =10, L, =N&/2 =8, with lowest energy as a function of a po-
lar angle 0 on the sphere. Dotted line: same as the solid line
but the state is given by an insertion of one particle at L, =8
(north pole) to the ground state of the NH =16, N, =9 system
(normalized).

425



VOLUME 71, NUMBER 3 PHYSICAL REVIEW LETTERS 19 JULY 1993

0 7 s s s
I

s

(N, N )

0.6

s

6
9 o
0

0 12

s s
I

s s s
I

s s s

11 o
o00

0.5

0.4

0.3

0. 1

0
0

0 0
0

XX

X X
X X X

0 0
16

0 0

17

(N, N )-h, (N, N )

13
X 17

16
X X X X X

0
0

0 0
0

XX

X X
X X

s s s I s s s I s s s I s s s I s s s

0.20 0.4 0.6 0.8 1

N /(N +1)

FIG. 3. Energy gap ass„,(N„N&) =E(N, + I,N&/2) —2E(N„
0)+E(N, —I, N/ss2) for finite systems (circles), and ts.s„„(N„
Np) —is (N„Np) =E (N, + I,Nq/2) —

E o(N, + I ) +E (N, —I,Np/
2) Eo(N, —I)—(crosses). (Near —, states, N& are shown in the
figure. )

Since the background charge is not included in our calcu-
lations, dt„„ includes the charging energy. The charging
energy is proportional to I/QN& and vanishes in the ther-
modynamic limit. However, for a finite system, the latter
has a sizable contribution and the calculated h.t„„gives
an upper bound to the tunneling gap. To estimate the
contribution of the charging energy, we calculated h, ,
=/ss. ,„„(N„N&) /s (N„N&). A—, gives a lower bound to the
tunneling gap, since in the thermodynamic limit
A(N„N&) approaches zero for the compressible state and
remains finite for the incompressible state. 6& does not
contain the charging energy and the diN'erence between
ht„„and h& is the charging energy plus the incompressi-
bility gap. The results for h& are shown as crosses in Fig.
3. The numerical results suggest that in the thermo-
dynamic limit there is a finite energy gap in the electron
spectral function for all filling fractions. The true value
of the gap is between h&„„and ht calculated for finite sys-
tems. For example, the expected tunneling gap for the &

state is estimated to be about 0.3+ 0.1. However, since
the systems considered are small, we cannot eliminate a
large system size dependence. This is especially true for
the compressible states. The numerical calculation can-
not determine whether the gap is a real gap or a pseudo-
gap [6l. The energy gap in the spectral function has the
expected particle-hole symmetry and appears to have a
maximum near v= 2 . At low density, the interaction be-
tween electrons is weak and we expect the gap to be pro-
portional to the square root of the electron density.

It is instructive to understand the above results within
the framework of the "Fermi liquid" theory of the
state proposed in Ref. [11]. It was shown that the low
energy dynamical properties of the 2 state are described
by the Fermi liquid theory of the pseudoparticles, each of

which corresponds to a bound state of an electron with
two Aux quanta. The ground state is a uniform compres-
sible state. Inserting an electron into the system not only
creates a pseudoparticle but also a vortex of circulating
currents j cczxr/r centered at the pseudoparticle posi-
tion.

On the sphere, the state created by the electron opera-
tor corresponds to a collective pseudoparticle excitation
with an angular momentum L =N&/2. Such an angular
momentum can be converted into a planar momentum p
through the relation L =pR, where R is the radius of the
sphere. We find p =N, ' kF, where kF is the Ferm i

momentum of the pseudoparticle. Therefore the collec-
tive pseudoparticle excitation carries a huge momentum,
i.e., much larger than the Fermi momentum. Such a
large momentum cannot originate in the localized pseu-
doparticle which can carry at most a momentum of order
kF but rather arises from the circulating currents of the
vortex. This complicated collective excitation with large
momentum associated with the insertion of an electron is
responsible for the gaplike structure in the electron spec-
tral function.

Within the standard Fermi liquid theory (on a sphere),
what is the minimum energy state with angular momen-
tum N&/2 (or, equivalently, a planar momentum p
=N, ' kF)? One candidate is the state in which the elec-
trons rotate uniformly around the z axis. It has an ener-

gy 3kF/2m* =3EF, where m* is the eft'ective mass of the
pseudoparticle. EF is of order of the Coulomb energy
since the effective mass is generated by the Coulomb in-
teraction. If the pseudoparticle had only short range in-
teractions, the uniform rotating state would indeed be the
lowest energy state at fixed angular momentum. Howev-
er, because of the long range interactions between the
pseudoparticles, there might be other states with lower
energy. The uniform rotating state (UR) gives us an

upper bound on ht„„.

Atssss ~ 2kF/m

Another candidate is the state obtained by creating a
localized electron at position r (PV state). In the pseu-
doparticle picture, this state has, at first sight, a logarith-
mically divergent energy due to the associated vortex.
Below we show that a vortex can have a finite energy
when combined with a localized pseudoparticle as a
consequence of the long range interactions. Note that the
density in the PV state is peaked near the localized pseu-
doparticle (see Fig. 2). If the PV state has the lowest en-
ergy among the L =N&/2 states, the density peak cannot
diff'use away.

Our numerical results for the spectral function of the
electron and the associated density profile calculations
suggest that most weight in the electron spectral function
is carried by the PV state. The fact that the PV state has
finite energy indicates the existence of the gaplike struc-
ture in the spectral function. On the other hand, the
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spectral function for e (0 and the wave function of
lowest energy for the hole (Fig. I) are complicated. We
do not have a simple picture. (See note added below. )

A rough estimate of the mean energy cost to instan-
taneously insert an electron into the ground state ~g.s.) is

F. = (g.s.
~ y, (r)Hyt(r) ~g.s.)

(g.s.
~ y, (r) y,t(r) ~ g.s.)

(5)

H =Ho+ V —
p d~r d r'J(r)Vp(r —r')6p(r')

+ d2r d r'6p(r)6p(r')Vp(r)Vp(r')
2m* "

2—
irpu „d r d r'Sp(r)8p(r')]n~r —r'~, (7)

where $p=p —
pp

—6(f'). Physically, we can say that the
localized pseudoparticle allows the vortex to acquire a
finite energy in contrast to the usual situation. Converse-

ly, the vortex of circulating currents sustains the localized
pseudoparticle in its original position and makes it dif-
ficult for the excess charge density to disuse away.

We remark that we have ignored the eAects of impuri-
ties in the above calculations. In the presence of the im-

purities, the translation and rotation symmetries are bro-
ken, and we expect that there is only a pseudogap in the
electron spectral function [6].

The tunneling gap observed in experiments is at v= 2,

The relation between the electron and the pseudoparticle
is given by

t( ) t( ) ipfd r'p(r —r')p(r')
y, r —y re

where &=2 for the v= —,
' state. p(r) denotes the azimu-

thal angle (in an arbitrary geometry) and p(r) the elec-
tron (or the pseudoparticle) density operator at point r.
A physical interpretation of (6) is that the electron opera-
tor creates a localized pseudoparticle at r and a vortex
centered at the pseudoparticle position.

For simplicity, we consider a planar geometry and as-
sume that the electron is created at the origin r =0. As
in Ref. [11] we rewrite the Hamiltonian (5) in terms of
the pseudoparticle operators by introducing an additional
gauge field a(r) given by a(r) =Pfd'r Vp(r —r')p(r').
The gauge field leads to long range interaction between
the pseudoparticles. The average energy (5) consists of
the following divergent terms: (i) a contribution which
arises from the vortex current (its energy density is pro-
portional to [Vp(r)] and leads to the usual logarithmic-
ally divergent energy); (ii) a contribution which repre-
sents the long range interaction between the vortex
current and the added pseudoparticles; and (iii) a term
which describes the long range interaction between the
pseudoparticles. The above three terms turn out to cancel
each other. The finite contribution of the average energy
can be written as (g.s. ~+H+t~g. s.) where the effective
Hamiltonian 0 is given by

24' =0.15e /pig, and 262=0 4.5e /elq for the onset and
the peak positions of the tunneling current, respectively
(see Ref. [5]). These values are comparable with our es-
timate At„„—0.3e /rig. We ignored the finite thickness
of the electron wave function in the z direction which has
the eA'ect of reducing the gap.

We are indebted to P. A. Lee for suggesting the prob-
lem and for many helpful discussions. We are also grate-
ful to B. I. Halperin for illuminating discussions on the
v= —' state. Y.H. and P.-A.B. are supported by NSF
Grant No. DMR-9022933. X.G.W. is supported by NSF
Grant No. DMR-9114553.

Note added. —After completion of this work and sub-
mission of the original manuscript, B. I. Halperin pointed
out to us the possible occurrence of L =N&/2 angular
momentum states with very low energies. This is specific
to the compressible states. Within the standard Fermi
liquid theory, the L =N&/2 state always has a finite ener-

gy. However, because of the singular gauge interaction
in the "Fermi liquid theory" of the 2 state, one may be
able to construct an L =N&/2 state with zero energy. The
existence of this zero energy state is beyond the standard
Fermi liquid theory and suggests some non-Fermi-liquid
behaviors in the 2 state. Although finite size calcula-
tions do not provide an evidence for the existence of such
zero energy states, we cannot exclude their occurrence in
a very large system. We believe that the dominant con-
tribution to the electron spectral function originates from
the PV state. Therefore our estimate of the tunneling
gap should be comparable with the main peaks observed
in the experiments for arbitrary filling fractions.
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