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Non-Fermi-Liquid Behavior in Quantum Critical Systems
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The problem of an electron gas interacting via exchanging transverse gauge bosons is studied
using the renormalization group method. The long wavelength behavior of the gauge field is shown
to be in the Gaussian universality class with a dynamical exponent z = 3 in dimensions D & 2.
This implies that the gauge coupling constant is exactly marginal. Scattering of the electrons by
the gauge mode leads to non-Fermi-liquid behavior in D & 3. The asymptotic electron and gauge
Green s functions, interaction vertex, specific heat, and resistivity are presented.
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The observation of unconventional normal state prop-
erties in the high T, cuprates has stimulated great in-
terest in 2D models possessing a low energy non-Fermi-
liquid (NFL) fixed point and a Fermi surface [1,2]. It has
been realized that NFL behavior would follow naturally
if the electrons or quasiparticles experience long range or
singular interactions. Unfortunately, long range interac-
tions generally do not survive screening in the presence
of a large Fermi sea and the low energy physics is again
a Fermi liquid, unless they arise from the critical fluctu-
ating mode at a phase transition where the mass of the
mode is tuned to zero.

An exception is the system of an electron gas interact-
ing via exchanging transverse gauge bosons like photons
[3]. The interaction cannot be screened because gauge
invariance prevents the photon from acquiring a mass,
provided gauge invariance is not spontaneously broken.
However, if the gauge field is the regular electromagnetic
one, the effects due to its coupling to the electrons are
suppressed by the fine structure constant (1/137) and

the ratio of the Fermi velocity to the speed of light v~/c,
thus practically unobservable. Recently, the same prob-
lem appeared again in the study of the half filled Landau
level [4] and in the context of strongly correlated systems
[5—8]. The local correlation such as eliminating double
occupation induces strong phase fluctuations which may
be described by gauge fields in the long wavelength limit.
In this case, the effects of the gauge interaction are usu-
ally not suppressed. In fact, it has been suggested that
the gauge interaction is probably an essential element of
an effective theory of high T, superconductivity [5—8].
Although singular behaviors, signaling breakdown of the
Fermi-liquid theory, have been seen in several physical
quantities for this system [3—10], and even some sugges-
tions have been made about the low energy fixed point
[ll], its nature still remains unclear. In this Letter, we
reexamine this problem using the renormalization group
(RG) method and derive a scaling solution of the low

energy Bxed point.
We consider the following Hamiltonian:

1 ~ /'BA 2II = d r Qt(r) (—iV' —gA) —p, g(r) + — d r
~

+ (V' x A)
2m 2 I Bt

where Q and i/~t are electron annihilation and creation op-
erators with the spin index neglected, p, is the chemical
potential, and A is the transverse vector potential in the
Coulomb gauge. We do not include the scalar potential
since it is going to be screened. We set the photon veloc-
ity c = j. and consider v~ c. The coupling constant g
is considered to be less than 1 but not too small so that
the effects of the gauge interaction become observable at
a temperature where other effects, such as impurity scat-
tering, have not taken over yet. We are interested in the
low energy and long wavelength behavior of the system.
That is, we shall scale the frequency v and the momen-

turn q of the gauge field as well as the frequency u„of the
electrons to zero. But the electron momentum k is scaled
to the Fermi wave vector k~. This problem is similar to
the quantum critical phenomenon (QCP) considered by
Hertz [12]. The only difference is that in QCP one has to
adjust a relevant parameter to land on the critical point,
while for the gauge interaction, the T = 0 criticality is
guaranteed by the gauge invariance.

To determine the low energy and long wavelength be-
havior of the gauge Beld, we integrate out the electrons
and expand the result in powers of gauge field A,

S,g(A) = S,tr (A) + ) r A + ) r'&~ (q, q„qz)A (q)Ais(qi)Aq(q&)A (—q —qi —q, ) ~ (2)

where we have introduced a short hand notation q = (q, v„). The As term has been studiecl before [13]. The quadratic
part of the effective action is
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Q~SQ) 3
Vn ~ S Vn) for s —+ 0.

Obviously, the dynamical exponent is z = 3. To see the
effects of interactions, we simply count scaling dimen-

4
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l
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xA (q)Ap( —q), (3)

where p g A:~. We have dropped the v„ term in the
original action since it is irrelevant under the following
scaling which preserves the form of (3):

=0

sions. Under the scaling (4), the gauge field scales as
A s & + ~/ . The A3 interaction is marginal if I'~ ~

scales as s~s D}~z. From the Hall effect study [13], it has
been known that I'~s} vanishes faster than s under the
scaling (4). Thus, it is irrelevant in dimensions D & 2
(transverse modes exist only in D & 2). Similarly, the
A4 interaction I'~4} is marginal if it scales as I'C4} si
and so on. The I'~4} term includes three diagrams (Fig.
1). We now verify that I'~ } is nonsingular as q ~ 0 and
furthermore that the constant term vanishes as required
by gauge invariance. Letting the external frequencies go
to zero and then taking the limit q, —+ 0, the leading
termin D=3is
2A:2 A:4

(5)

where n~(e) is the Fermi-Dirac function and the primes denote derivatives. The result (5) also holds in other
dimensions. Thus, we reach the conclusion that I'~ ~, I'~ ~, and all interactions in the effective gauge action are
irrelevant [12] because higher order terms are even more suppressed under the scaling (4).

An immediate consequence of the irrelevance of all corrections to the Gaussian action (3) is that we can derive the
asymptotic form of the specific heat. Integrating out the gauge field in (3), the free energy is

v.'/&T
/(T) ) -

ln z + &~
l

Ti+&ls d~ ~~isi-
0

where we have an upper cutoff for the q integration at
q„of order kF, and the frequency integration at q~s/p

which has been sent to infinity due to the convergence of
the integration. It is easy to see that F(T) T2 inT in
D = 3 and F(T) Ti+~~s in D ( 3. The corresponding
specific heat is C TlnT in D = 3 [3], and C TD~s

in D & 3, respectively. Further corrections have higher
powers in T. These results are consistent with the general
scaling analysis since the scaling form of the specific heat
is uniquely determined by the dynamical exponent and
the dimensionality.

Another consequence is that the coupling constant g is
exactly marginal; its beta function vanishes identically.
This follows from the Ward identity which stipulates that
the vertex renormalization factor Zq, in the standard
quantum electrodynamics notation, is equal to the elec-
tron wave function renormalization factor Z2 which rep-
resents the magnitude of the Fermi surface discontinuity.
Thus, the renormalization of the coupling constant g is
solely determined by the gauge field wave function renor-
malization factor Z3, which remains equal to j. because
all corrections due to the interactions are irrelevant. One
also finds a vanishing beta function of g by imposing RG
invariance on the specific heat [14].

We now turn to the behavior of the electrons. In cal-

FIG. 1. The fourth order interaction vertex of the effective
gauge action. The internal lines represent the noninteracting
electron Green's function.

culating the electron self-energy, the photon propagator
is given by (3). We do not need to include further photon
self-energy corrections because they are irrelevant. When
analytically continued to the real frequency, the electron
self-energy is Z(k, iw„= a + i0+) = 2'(k, w) + iZ" (k, u).
To the lowest order, we find

pl~(k ~) ~ &r ls (7)8'
The real part of the self-energy is given by the Kramers-
Kronig relation,

2(d 2"(kF, e)Z'(kF, ~) =

D/3 —i D/3
4~2

0/~ d D/3

7r X2 —1' (8)

(10)

where 0 q /p is the frequency cutoff.
I et us first concentrate on D=3. From (8), we have

c}E (kp, cu) gzvF (Al
Zz(kp, ~) = 1 — ' = 1 — ln

l

—l.
c}cd 47r

(9)
The physics of this logarithmic term is similar to the well
known infrared catastrophe [15]. Because of the critical
nature of the gauge field, the electrons near the Fermi sur-
face are dressed by a cascade of damped photons. Tech-
nically, Z2 given by (9) is reliable for ~ & Ae 4» "~.
In order to find Z2 for a ~ 0, we use the standard RG
method and first obtain

Bin Z2 g vy

d ln~ 4~2
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Bearing in mind that the coupling constant g stays un-

changed, the leading logarithmic series is summed up by
integrating (10) over the range [u, 0] to give

Z2(kF, ~) uP, G (kF, u)), . (11)

The spectral density G" has a power law divergence, re-
moving all remnant characters of the quasiparticle and
destroying the Fermi liquid.

In D & 3, the situation is less transparent. From (8),
the leading self-energy is 2'(kF, a) 2"(kF, cu)

with an exponent D/3 & 1. As the energy is lowered,
the electron Green's function is dominated by the eKect
of the self-energy. The crucial question is then whether
or not more singular terms will appear as w —+ 0 in higher
order calculations, such as at "~ ~/' j in the nth order.
For the following reason, we do not expect these kinds of
terms. The exact marginality of the coupling constant g
in all dimensions means that there should be no infrared
divergence. This does not contradict the appearance of
the logarithmic divergence in the electron self-energy at
D = 3 which is purely due to the infrared catastrophe,
indicating that each electron at the Fermi surface is ac-
companied by an infinite number of soft photons. The
total energy of these photons is Rnite. If higher singu-
lar powers were generated in high order calculations for
D ( 3 and we still tried to interpret them as the in-
f ared catastrophe, it would imply a divergent total en-

ergy of the accompanying photons which is unphysical.
The reasonable expectation as suggested by Polchinski
[11] is that once we have included the new term w~/3 in
the electron Green's function, there will be neither in-
frared divergence responsible for the renormalization of
g nor infrared catastrophe (which occurs only in D = 3
but cancels out in gauge invariant quantities). This is

partially supported in the direct evaluation of the first
crossing diagram of the electron self-energy [16]. By
finding an asymptotic solution of the Dyson equations
(this approach is physically sensible because g is exactly
marginal), we verify this expectation. Specifically, we
shall prove that the full gauge propagator is given by
(3), and the full electron propagator and the irreducible
gauge interaction vertex have the following asymptotic
forms for D & 3:

1
G(k, ~+ib) = (12)

Ai tee
t

/ sgnw —ek + iA2 tu t

~/3 sgnb
'

A„(k, k+q, q) = AkF, (»)
where A1, A2, and A are all constants. Note that in order
to assume the scaling form (12), we need Z(k, a + ib) for
general k and cu which has been calculated in [4]. Since
Z(k, u+ ib) depends on k only when cu & (k —kF)3, the
k dependence of Z(k, cu + i6) is irrelevant under scaling,
justifying (12).

The three irreducible objects, (12), (13), and the gauge

t

propagator given by (3), have to satisfy the Dyson equa-
tions (Fig. 2). At T = 0, they are

2A
E"(k,~) = — ) [k —(k j) ]

' d—G"(k+ q, u) + v)D"(q, v), ~ ) 0,
4J 7t

(14)
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q

+[G'(kF + q, v) —G"(kF q q, v) ]D"(q, v)) + (16)

2 D—17lAg kF v

2(27r)~ 'q '—
Ag v~
(2 )&—i A (1+x2)zD/3

(19)

where II" is the imaginary part of the photon self-energy.
Note that the vertex equation (16) contains a series of
infinite skeleton diagrams and only the expressions for
the erst two have been written out. The integrations can
be carried out in D & 3 keeping only the leading powers
in frequency and momentum. We find

A 2v
gtl(k )

g F D/3 —1 D/3
2(2~)~-'

oo /' 1
d* / 'l

t
1+—

~2

The important point is that (19) is well behaved and
no higher singular terms are generated in (17) and (18).
Strictly speaking, we have to verify that no infrared di-
vergence will be generated in every skeleton diagram of
(16). Nevertheless, as explained above, we do not expect
divergence in higher order skeleton diagrams because g is
exactly marginal; they may, however, contribute to deter-
mining the constants A1, A2, and A. Thus, we conclude
that (12), (13), and the gauge propagator given by (3)
are indeed the asymptotic low energy solution.

From (12), we see G"(kF, w) cu +/3. As D ~ 3,
the exponent is discontinuous from the D = 3 value
given by (11). It is then instructive to study the di-
mensional crossover as we lower the pertinent energy
scale, treating D = 3 —c as a continuous parameter and
tet « 1. To analyze (8), we define a small energy scale:
T, = Ae 3/~'~. At cu ) T„we find (pw) '/ = 1 and
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FIG. 2. Dyson equations. Z, 0, and A„are the irreducible
electron, photon self-energies, and the irreducible gauge inter-
action vertex, respectively. All lines are full Green's functions.

FIG. 3. Illustration of the dimensional crossover. For ther-
modynamic quantities, the temperature T corresponds to ~.

Z'(cu)/w g v~ in(A/w). Comparing with (9), we see
the same behavior as in 3D at u ) T, for all z.

At a (T„we see from (8) that the situation is differ-
ent for D ) 3 and D ( 3. In D ) 3, ln(A/w) appearing
at w & T, is now cut off by 3/[s[. The frequency depen-
dence of Z'(w)/w dies as w~'~~s. The system eventually
flows to a Fermi-liquid-like fixed point with a quasipar-
ticle scattering rate given by (7). In D ( 3, we have
2'(w)/cu (pw) '~s/s from direct evaluation. The ef-
fect of (pa) 'is starts to become important at w ( T, .
As we have argued, there are no other singular terms.
In the numerical prefactor of (pw) '~, each ln(A/cu) ap-
pearing at cu & T, is again replaced by 3/s and the series
in 3/s can be summed up to give a constant for finite s.
We thus recover the D ( 3 behavior (12). An illustration
of the dimensional crossover is sketched in Fig. 3.

Although the electron Green's function is gauge de-

pendent, physical results derived from it are not. As an
example, we calculate the resistivity from the Kubo for-
mula. Since (13) has no singularity in D ( 3, the vertex
correction in the resistivity does not change the temper-
ature dependence. So, we find p T+~s.

The similar occurrence of the electron critical scatter-
ing at the quantum phase transition in the presence of a
Fermi surface probably provides the easiest experimental
realization. The role of the gauge field is then played by
the soft mode of the critical fluctuations. In the pressure
driven T, —+ 0 itinerant ferromagnetic transition, the crit-
ical mode is the magnon excitation. The power law diver-

gence in the electron spectral density is directly related to
physical observables in the Fermi surface measurements.
It is interesting to note that many heavy fermion sys-
tems show low temperature critical behavior, markedly
difFerent from the Fermi-liquid expectation [17,18]. The
critical scattering has been seen at the heavy fermion
metamagnetic transition [19].
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