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It is demonstrated that stability criteria derived using elastic stiAness coefticients which govern stress-
strain relations at finite deformation give quantitative predictions of crystal instability, as observed in

direct molecular dynamics simulations. With the aid of such analysis we show that instabilities can be
triggered in succession; as a consequence, the limit of metastability in the superheating of a defect-free
crystal can be predicted.
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Much of the current discussion of structural transfor-
mation driven by instabilities of a strained lattice is based
on stability criteria expressed in terms of elastic con-
stants. However, whether such criteria are or are not
capable of predicting the actual onset of an instability is a
question that generally has not been satisfactorily
resolved. The difticulty, on the theoretical side, lies in the
diA'erent ways that stability analyses have been formulat-
ed and in evaluating properly the elastic parameters
which appear in them. On the experimental side, com-
peting eff'ects frequently render the triggering instability
uncertain.

For a cubic crystal there are three generally accepted
elastic stability criteria [I],

~11+2t 12 + 0 C44 + 0 ~11 C12 + 0

where Cj are the conventional elastic constants (in Voigt
notation). The first two have simple meanings, since the
existence of bulk modulus, BT = (C//+ 2C/z)/3, and
shear modulus, G =C44, are obviously necessary for sta-
bility. The third criterion, the existence of a modulus
against tetragonal shear, G'=(C// —C/q)/2, is thought to
play a more subtle role which can be dominant since gen-
erally G' & G (BT. In a number of long-standing prob-
lems such as melting [2], polymorphism [3], and
pressure-induced amorphization [4], the criterion which
is violated first is regarded as the mechanism causing the
onset of the structural transformation. Because these cri-
teria are so widely used, it is important to scrutinize their
applicability to processes where the crystal is actually
strained to the point of instability.

In this Letter we show that Eq. (I) is not adequate, ex-
cept in the special case of zero applied stress, to describe
the stability limits of perfect crystals at finite strain. Us-
ing elastic stiffness coeKcients as the proper stress-strain
relations at finite deformation, we derive generalized sta-
bility criteria as the finite-strain extensions of well-known
results such as Eq. (I), normally derived using linear
elasticity theory. The validity of the new criteria is
demonstrated, first, in the particularly simple and illus-

trative case of instability of a perfect crystal induced by
pure dilatation, by comparing the predicted critical strain
against direct observation through molecular dynamics
simulation. The analysis is then extended to two, more
complex instabilities, one induced by uniaxial stress and
the other induced by isobaric (zero pressure) heating.
These results reveal that the onset of one elastic instabili-
ty can trigger another in succession, an apparently gen-
eral behavior which has not been fully recognized in pre-
vious studies [5-7]. This characteristic of elastic instabil-
ities appears to be evidence for the existence of a hierar-
chy of crystal stability catastrophes recently suggested by
Talion [8]; as we will show below, a significant conse-
quence is that one can thus predict the metastability limit
of a superheated defect-free crystal [2,9, 10].

Consider an applied uniform stress taking a crystal in

an arbitrary initial configuration X to a final config-
uration x, with corresponding Lagrangian strain g;~
=(u,j+uj;+u;juj;)/2, where u;j. =du;/dX~ and u =.x
—X. For an isothermal process the free energy change is
dF= A(x) Tr jtdrt], where 0 is the system volume and
thermodynamic tension t j(x) is related to the applied
stress o;j(x) by the transformation t;j =J;/, 'o/, /(J')/j '

(prime denotes transpose), with Jj =dx;/dX/. The elas-
tic stiffness, or stress-strain, coe%cients will be defined as
B /k/(X ):—[8cs/j (x )/r/rik/] x, they may be written as
[11,121

Bjk/ C j/&/ + p '[[cd'/ (X')6jk + cJj/(X) Ii;g + o;/ (X )6j/

+ o j/, (X)6;/j —2o; (X)6/, /], (2)

where CJ//=—[0 '(x)8 F(x, T)/rjrl jrjrl//]L= [Btj(x)/—
Bq/, /]~ are the elastic constants evaluated at the applied
stress [13]. Equation (2) shows that the stiITness
coeScient tensor depends explicitly on the state of ap-
plied stress; consequently, except for isotropic or zero
stress, it has difI'erent symmetry from the elastic constant
tensor. The origin of the stress-dependent terms can be
shown to arise from the requirement of rotational invari-
ance of the free energy [12,14].
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Stability conditions are now derived by formulating the
strain energy density in terms of g;j, and requiring con-
vexity along with rotational invariance and the condition
of equilibrium [12]. One finds that by expressing the
strain energy as a quadratic in the strain Bg;~ and requir-
ing the energy to be positive definite [1], one obtains sta-
bility conditions in the form of Bj'k(6&I,()0. Thus, the
generalization of linear elasticity results for stability cri-
teria to finite strain is achieved by simply replacing the
elastic constants C;~ by the stiffness coefficients 8;~ (Voigt
notation). Because of the symmetry 8;Jki =B~;kI =B~;.g, 8
is a 6 x 6 matrix. The stability analysis becomes an eigen-
value problem leading to six instability conditions (cri-
teria), each with an eigenmode of deformation prescribed
by Brl;J [12,15].

To clearly demonstrate the difference between Eq. (1)
and the generalized stability criteria proposed here, we
consider a cubic crystal under hydrostatic pressure,
a;, = —P6;z (P (0 for tension). In this case the ele-
ments of B, having the same symmetry as C, are
B)) =B22=B33 C]] P, B|2=B2)=B)3=C|2+P, and
844=8ss =866 =C44 —P. Setting det(B) =0 gives

Ml =(Cii+2Cip)/3+P/3 & 0,
M2=C44 —P )0,
M3 =(C) )

—Ci2)/2 —P & 0.
(3)

In analogy with the corresponding criteria in Eq. (1), we

will refer to the conditions in Eq. (3) as spinodal (in the
sense of vanishing of BT), shear, and Born criteria, re-
spectively. With each of these criteria giving a critical
strain g, at which the lattice becomes unstable against
that particular mode of deformation, the actual response
of the system is governed by the smallest value of g, . For
pure dilatation, the eigenmodes are of the form (1, 1,
1,0,0,0)Bt), (0,0,0, 8rt~„0,0), and (6q„„8r)~~,6q„,0, 0,0)
with 6@~„+6gyy+6T)zz 0 ~ Thus, each instability mode
can be identified by its own symmetry characteristics; in

particular, we note that symmetry breaking (or "bifurca-
tion") with volume conservation is the signature of the
Born instability.

In order to obtain numerical results for the elastic
stiAness coefficients as well as directly observe the crystal
behavior at the point of instability, we perform molecular
dynamics simulations using an interatomic potential mod-
el of the embedded-atom-method type developed for Au
[16]. (The particular choice of the potential has no spe-
cial significance since we are concerned only with the
general nature of the results. ) The simulation cell is cu-
bic and contains N =504 atoms, arranged in an fcc struc-
ture with periodic border conditions. Starting with the
lattice parameter a set at the equilibrium value ao (corre-
sponding to zero pressure and minimum potential energy)
and temperature T =500 K, we equilibrate the system at
incrementally larger values while maintaining constant
temperature by velocity rescaling after every time step.

The elastic stiAness coefficients are obtained through
Eq. (2) and the fluctuation formulas for elastic constants
[12,13]. Figure 1 shows the left-hand sides of the spino-
dal and Born stability criteria of Eq. (3) which lead to a
prediction of the onset of instability, via the vanishing of
bulk modulus, at a strain of (a/ao), h=1.059. The actual
instability observed by direct simulation occurs at (a/
ao),b, =1.053, as indicated by an abrupt release of the
internal stress and a corresponding lowering of the
enthalpy, both being consequences of lattice decohesion in

the form of cavitation. Thus, the prediction of Eq. (3) is

directly verified.
In Fig. 1 the corresponding quantities for the stability

criteria of Eq. (1) are also shown; these give, in contrast,
a prediction of instability, via the vanishing of tetragonal
shear, at a strain of (a/ap)th =1.025. Clearly then, in

this case neither the nature of the instability nor the value
of the critical strain are correctly predicted by Eq. (1).

To investigate the instability induced by an anisotropic
external stress, we consider applying uniaxial tension,

o;~ = —o6;~6j], to an fcc lattice, where the subscript 1

denotes the x direction. The deformed system takes on

tetragonal symmetry, elongating in the direction of stress
and contracting in the two transverse directions. From
det(8) =0 we now obtain four stability criteria,
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FIG. 1. Variations of Ml (closed circles) and M3 (closed tri-
angles), as defined in Eq. (3), with lattice strain a/ao. Solid
lines indicate linear extrapolations to give critical values for
each instability. Also shown are BT (open circles) and G' (open
triangles) from Eq. (1) with dashed lines as linear extrapola-
tions. Arrow indicates the critical strain observed by direct
simulation.

(Cp2+ C23) (C I | 0 ) 2 (C12+ 0 ) & 0,

Cpp —
CQ3 & 0, C44 & 0, Cs5 —cr/2 & 0,

with corresponding eigenmodes of deformation. These
again can be identified as spinodal, Born, and two shear
instabilities. Inserting the elastic constants calculated by
molecular dynamics for this case, we find that the Born
criterion gives the smallest value of q, . The intersection
of C22 and C23, both increasing with a/ao because of
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FIG. 2. Time response of (a) normalized lattice parameters
along the direction of strain (asterisk) and along the two trans-
verse directions (circle and plus), and (h) matrix elements h~2

(circle), h~3 ( dot), and h23 (line). One time step is equivalent
to 2x 10 s.

Poisson effect, occurs at (a/ap)ih=1. 072. This predicted
value is to be compared with the observed critical strain
at (a/ap)ob =1.073 in a direct simulation at T=500 K
with N =108 atoms [12].

Figure 2 shows the temporal evolution during equili-
bration of the lattice parameters along the three initially
orthogonal directions, as well as the oA-diagonal elements
of the matrix h;z which defines the shape of the simula-
tion cell [5]. The above mentioned instability occurs at
about time step 5000, where symmetry in the two trans-
verse directions is broken by the system elongating in one
direction while contracting in the other. Furthermore, it
can be seen that a second structural response follows at
time step 7000 at which point the simulation cell under-
goes significant shear deformation [Fig. 2(b)l. Given the
close agreement between the predicted and observed criti-
cal strains and the symmetry characteristics of the first
instability, we conclude that Eq. (4) is quantitatively
correct in describing the nature of the incipient instability
under uniaxial strain. Although it does not necessarily
follow from Eq. (4) that a second instability has to occur,
nevertheless, the numerical results indicate that the next
instability to occur should be a shear deformation at
a/ap=1. 242. This value may be compared with the shear
transformation indicated in Fig. 2(b) which is seen to
occur at a/ap =1.227. Thus there seems to be reasonably
good correspondence between stability criteria and actual
system response after the initial instability. In this case,
the induced transition is fcc to bcc.

For the last instability to be analyzed we consider a
particularly important special case of isobaric heating at
zero pressure, where, according to Eq. (2), the stiAness

FIG. 3. Variations of BT, 6, and G' with lattice strain a/ao.
Lines indicate linear extrapolations to give critical values for
each instability. Arrow indicates the critical strain observed by
direct simulation.

coefticients are equal to the elastic constants, and the sta-
bility criteria given in Eq. (I) are now valid. Using the
same molecular dynamics model as before but with a
larger simulation cell, %=1372, we have calculated the
temperature variations of the elastic constants up to 1300
K. Figure 3 shows the left-hand sides of the stability cri-
teria of Eq. (1) after making a one-to-one correspondence
between temperature variation and variation in lattice
strain a/ap. Therefore one would predict that the inci-
pient instability is the vanishing of G', to occur at
(a/ap)ih =1.025. From the simulation results at T = 1350
K (Fig. 4) one sees that the first structural response does
have the predicted symmetry characteristics, and
(a/ap), b, is 1.024. This is an explicit confirmation that
the vanishing of the tetragonal shear is responsible for the
homogeneous melting of a defect-free crystal, as previ-
ously suggested [10]; also it signifies that the condition
6' =0 gives the upper limit of superheating or metastabil-
ity [9,10] in this special case.

It is clear from Fig. 4(a) that the onset of the Born in-
stability triggers both a shear [Fig. 4(b)] and lattice
decohesion [Fig. 4(c)] instability, the latter showing a
characteristic volume expansion. This behavior, which
has not been recognized previously, implies that the sig-
nature of a first-order transition, namely, latent volume
change, is not necessarily associated with the incipient in-
stability. Thus, the picture of melting being driven by a
thermoelastic instability [2], involving a combination of
loss of shear rigidity [17] and vanishing of the compressi-
bility [18], is correct provided it is applied to the
phenomenon of mechanical instability of a crystal lattice
and not to the coexistence of solid and liquid phases
(melting in the thermodynamic sense) [7,10,12]. Fur-
thermore, it appears that our simulation results showing
explicitly the evolution of a sequence of elastic instabili-
ties (cf. Figs. 2 and 4) lend support to the notion of a
hierarchy of interrelated stability catastrophes of
different origins [8].
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Parallels between melting and crystal to amorphous
transition have been discussed [9,10], where one may ask
whether an elastic instability also can be the mechanism
for homogeneous amorphization. In the case of a-quartz,
stability criteria, expressed in terms of elastic stiffness
coefficients derived from stress-strain relations, give a
vanishing shear modulus in the correct pressure range
where pressure-induced amorphization has been observed
[19]. A fundamental question, still unresolved at present,
is the role of elastic instability in solid-state amorphiza-
tion when surface eA'ects [10], point defects [20], or
chemical disorder [9,21] have to be taken into account.
The Born instability has been suggested as the trigger
mechanism for amorphization in binary solid solutions
[21]. To clarify this issue, it appears that extending the
present stability analysis to include local deformation
eAects would be needed.

J.W. and S.Y. acknowledge helpful discussions with F.

Time steps (*100)

FIG. 4. Time response of (a) normalized lattice parameters
along the three initially cubic directions, (b) matrix elements
h|2, hi3, h23, and (c) normalized system volume 0/Qp. Arrows
indicate the onset of Born instability in (a), shear instability in
(b), and lattice decohesion in (c).
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