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Entire Fredholm Determinants for Evaluation of Semiclassical
and Thermodynamical Spectra
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Proofs that Fredholm determinants of transfer operators for hyperbolic flows are entire can be
extended to a large new class of multiplicative evolution operators. We construct such operators
both for the Gutzwiller semiclassical quantum mechanics and for classical thermodynamic formalism,
and introduce a new functional determinant which is expected to be entire for Axiom A flows, and
whose zeros coincide with the zeros of the Gutzwiller-Voros zeta function.

PACS numbers: 05.45.+b, 03.20.+i, 03.65.Sq

It has been established recently [1—3] that the
Gutzwiller-Voros zeta function [4] derived from the
Gutzwiller semiclassical trace formula [5] is in general not
an entire function. In this Letter we construct a new clas-
sical evolution operator (5) whose Fredholm determinant

(9) is entire for the Axiom A flows, and whose spectrum
contains the semiclassical Gutzwiller spectrum. Many
physically realistic chaotic scattering systems [6,7] are of
the Axiom A type, and for them the new determinant has
better convergence properties than the Gutzwiller-Voros
and Ruelle type zeta functions utilized previously [7,8].

The main idea, extending the dynamical system to the
tangent space of the flow, is suggested by one of the
standard numerical methods for evaluation of Lyapunov
exponents [9]: Start at xo with an initial vector ((0),
and let the flow transport it to ((t) along the trajectory
x(t) = fi(xo). The growth rate of this vector is multi-
plicative along the trajectory

l((i + ~')
I

l((t + ~')
I l((~) I

l((o) I l((t) I l((o) I

and can be represented by the trajectory of a "unit" vec-
tor u(t) multiplied by the factor ((t) I/I((0) I. For asymp-
totic times and for almost every initial (xo, ((0)), this fac-
tor converges to the leading eigenvalue of the linearized
stability matrix for the flow.

We implement this multiplicative evaluation of stabil-
ity eigenvalues by adjoining [10] the d-dimensional trans-
verse tangent space ( C TU~, ((x) v(x) = 0 to the (d+1)-
dimensional dynamical evolution space x g U ( H"+ .
The dynamics in the (x, () c U x TU space is governed
by the system of equations of variations [ll]:

x = v(x), ( = Dv(x)(.

Here Dv(x) is the transverse derivative matrix of the
flow. We write the solution as

norm, a differentiable scalar function g(() with the prop-
erty g(A() = Ag(() for any number A. While in gen-
eral such a norm is a space dependent function g((, x),
we shall assume here for reasons of notational simplicity
that g is a function of ( only. An example is the function

((i )
~ ~ ~

Any vector ( c TU can now be represented by the prod-
uct ( = Au, where u is a "unit" vector in the sense that
its signed norm is g(u) = 1, and the factor

A'(*. .) = g(((~)) = g(J'(*.) o)

is the multiplicative "stretching" factor introduced in (1)

A'+'(xe, uc) = A' (x(t), u(t)) A'(xn, uc).

The u evolution constrained to ETg, the space of unit
tangent vectors transverse to the flow v, is given by
rescaling of (2):

u' = R'(x, u) =, J'(x) u.
A x, ll

(4)

Equations (2), (3), and (4) enable us to define a multi-
pticative evolution operator on the extended space U x
ETg ~,

6 u' —A'~x u2'(x', u'; x, u) = e" * 6(x' —f'(x))
IA'(x, u) li' —'

(5)

where h, is a function additive along the trajectory, and

P is a number. This should be contrasted to "thermody-
narnic" [12—14] operators of the form

x(t) = f'(z.), ((&) = J'(*.) (., (2)

with the tangent space vector ( transported by the trans-
verse stability matrix Ji(xc) = cix(t)/Bxo. In order to de-
termine the length of the vector ( we introduce a signed

( ) = ( ( ))I

with Ai(x) an eigenvalue of J (x). Such operators are
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where J„is the prime cycle p transverse stability matrix.
As we shall see below, 6„, is intrinsic to cycle p, and
independent of any particular cycle point x&.

We note next that if the trajectory f (x) is periodic
with period T, the tangent space contains d periodic so-
lutions

e'(x(T+ t)) = e'(x(t))

corresponding to the d unit eigenvectors (ei, e2, . . . , e~)
of the transverse stability matrix, with "stretching" fac-
tors (3) given by its eigenvalues

J„(x) e, (x) = Az, e, (x), i = 1, ... , d.

The f du integral in (6) picks up contributions from these
periodic solutions. In order to compute the stability of
the ith eigendirection solution, it is convenient to expand
the variation around the eigenvector e, in the stability
matrix eigenbasis 6u = g huge~ . The variation of the
map (4) at a complete period t = T is then given by

J e, Bg(e,)
)g(J e, )2 Bu

.A„k c)g(e, )ek —e, '
buk .

A Bvkg' k

bR~(e, ) =
g(J e, )

in general not multiplicative in two or more transverse
dimensions, for the simple reason that the eigenvalues
of successive stability matrices are in general not multi-
plicative:

A bgA, Ab

Here J p = J~Jg is the stability matrix of the trajectory
consisting of consecutive segments a and 6, J and Jb
are the stability matrices for these segments separately,
and A's are their eigenvalues. In particular, this lack of
multiplicative property for A's had until now frustrated
attempts [15] to construct evolution operators whose
spectrum contains the semiclassical Gutzwiller spectrum.
(The Selberg zeta function [16] for geodesic Hows on sur-
faces of constant negative curvature is an exception: Mul-
tiplicativity is guaranteed by the Bowen-Series map [17],
which reduces the two-dimensional flow to a direct prod-
uct of one-dimensional maps, and makes it possible to
construct the associated transfer operators in terms of
one variable [18].)

In order to derive the trace formula for the operator (5)
we need to evaluate Trl = f dxduZ'(u, x;u, x). The

f dx integral yields [19] a weighted sum over primitive
periodic orbits p and their repetitions r:

The tIu, component does not contribute to this sum since
g(e, + du, e,) = 1+du, implies Bg(e,)/Bu, = 1. Indeed,
infinitesimal variations 6u must satisfy

g(u + bu) = g(u) = 1 ). c)g(u)
bug

OQg

so the allowed variations are of the form

) ~
ek e'

g
ck, ]ck~ ((&g(e.)

BB,k

and in the neighborhood of the e, eigenvector the f u
integral can be expressed as

r ~ r ~

kgi
dck .

Inserting these variations into the f du integral we obtain

du tI(e, +Su —B (e, ) —ART(e, ) + )

kgi
dck b((l —Ak/A, )ck + )

1
---- ]1 —Ak/A,

'

kgi

and the f du trace (6) becomes

1 1) -
[

A" ]~-' --"
[

1 —A" /A" (8)

The corresponding Fredholm determinant is obtained by
observing [19] that the Laplace transform of the trace

Trd(s) = dte" T ~(t)

This determinant is the central result of this paper. Its
zeros correspond to the eigenvalues of the evolution op-
erator (5), and can be evaluated by standard cycle ex-
pansion methods [3,20].

In the "thermodynamic" formalism [12—14] for classical
chaotic systems P is a parameter which plays the role of
"inverse temperature, " and 6„ is the integral of some
weight function h(x) evaluated along the prime periodic
orbit p. The classical correlation spectra are given by P =
1 and h„= 0. For two-dimensional Hamiltonian flows the
Gutzwiller semiclassical quantization [5] corresponds to

P = 1/2, h„=iS„/5+iv„vr/2, s = 0, (10)

is a logarithmic derivative TrZ(s) = —
&, lnF(s) of the

Predholm determinant:

f &(h„+sT„)r
F(P, s) = exp —) „4„,(P) . (9)
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where S& is the action of the periodic orbit, and v& its
Maslov index. The derivation of the Fredholm determi-
nant (9) for semiclassical quantization of flows in dimen-
sions higher than 2 follows closely the standard Van Vleck
propagator derivation [5] and will be presented elsewhere

[21].
The simplest application of (9) is to two-dimensional

hyperbolic Hamiltonian flows. The stability eigenvalues
are related by Ai = 1/A2 = A, and the Fredholm deter-
minant is given by

l( g & er(h„+sT„)

+

1 —1/A2" 1 —1/A2"
'

8H

X

GV

QF

The extra multiplicative factor is set to the eigenvalue
sign o = A/~A[ for F, and to o. = 1 for F~, this will
be used below. The Gutzwiller-Voros zeta function cor-
responds to setting 6„„=~A„"[ri (1 —1/A„"), and the
"quantum Fredholm determinant" [2] is obtained by set-
ting 6„„=~A„"] i in (11).

The main virtue of the determinant (9) is that the the-
orem of Rugh [22], applicable to multiplicative evolution
operators such as (5), implies that this determinant is
entire for the Axiom A flows, i.e., free of poles in the
entire complex 8 or complex energy plane. One conse-
quence of this general result is that the cycle expansions
of the new Fredholm determinant should converge faster
than exponentially with the maximal cycle length trun-
cation, in contrast to the more familiar Gutzwiller-Voros
and Ruelle type zeta functions which converge exponen-
tially. This was recently checked by detailed numerical
studies [3] of the related quantum Fredholm determinant
[2], as well as by direct checks [21] of (11).

Here we illustrate the efI'ectiveness of the new de-
terminant by one numerical example. The dynamical
system tested is the Hamiltonian Henon map xI,+1
1 —ax& —xh i at a = 20. This map can be interpreted as
a normal-form approximation to the Poincare section of
an Axiom A repelling flow with complete binary Markov
partition, such as the 3-disk repeller [3]. We assume that
the flight time between collisions is constant, so the ac-
tion of a cycle p is given by S„/5 = A:n„, where k = v E is
the wave number, and pick as the Maslov phase v„= 2n„,
corresponding to the A1 representation of the 3-disk sys-
tem. In this model a relatively high number of periodic
orbits can be easily computed; in evaluating the zeros of
the Gutzwiller-Voros zeta function, the quantum Pred-
holm determinant of Ref. [3], and the new Fredholm de-
terminant (11) plotted in Fig. 1, cycle expansions were
truncated to cycles up to period 18.

The dynamics (4) can be restricted to a u unit eigen-
vector neighborhood corresponding to the largest eigen-
value of the 3acobi matrix [21]. In this neighborhood the
largest eigenvalue of the 3acobi matrix is the only fixed

I

0. 5
I1.5 2. 5

Re (k)

I IG. 1. The leading semiclassical resonances in the A: com-
plex wave-number plane (x) for the determinant (9), com-
pared with ( ) the zeros of the "quantum Fredholm deter-
minant" [2,3] for the Henon map xg+r = 1 —20xz —zA;

model repeller flow. While the quantum Fredholm determi-
nant has a finite region of analyticity [the bottom line of ze-

ros reflects a pole expected at Im(k) = —4.559843. . . , indi-
cated by the dashed line labeled "QF"], the new determinant
shows no numerical indication of any poles, and enables us
to reach resonances deeper down in the complex plane. The
Gutzwiller-Voros zeta function is reliable only down to the
line labeled "GV," Im(A;) = —2.491905. . . , the upper bound
on the poles of determinant F (—,E) in (12).

where F includes only the first term in the A„„sum
(ll). The zeros of the Gutzwiller-Voros zeta function
coincide with the ones obtained from F+(~, E), and the
leading poles arise from F (2, E). Such relations [3] fol-
low by inserting into 4„„identities like

1 1 1

1 —1/A" A" 1 —1/A"

[rr weight in (11) is needed to account for the 1/A = rr/[A[
term in the above indentity].

In conclusion, we have constructed a classical evo-

point, and the Fredholm determinant obtained by keep-
ing only the largest term the A„„sum in (8) is also entire.
This observation enables us to show that the Gutzwiller-
Voros zeta function Z(E) for Axiom A flows is meromor-
phic in the complex E plane, as it can be written as a
ratio of entire functions; for two-dimensional Hamilto-
nian systems,

F+(2, E)F (2, E)
F-(2 E)F+(2 E) '
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lution operator for semiclassical quantization, and de-
rived a new determinant for periodic orbit quantization
of chaotic dynamical systems. We have checked numeri-
cally that the new determinant is analytic to the limit of
numerical precision of current cycle expansions, and well
beyond both the Gutzwiller-Voros zeta function and the
quantum Predholm determinant.
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