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Scaling Behavior of Chaotic Systems with Riddled Basins
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Recently it has been shown that there are chaotic attractors whose basins are such that every
point in the attractor's basin has pieces of another attractor's basin arbitrarily nearby (the basin is
"riddled" with holes). Here we report quantitative theoretical results for such basins and compare
with numerical experiments on a simple physical model.

PACS numbers: 05,45.+b

Recently it has been shown [1,2] that chaotic systems
with a simple, very common type of symmetry can dis-
play a striking new kind of behavior. In particular, these
systems may have an attractor whose basin of attraction
is such that every point in the basin has pieces of another
attractor s basin arbitrarily nearby [3]. That is, if rp is
any point in the first attractor's basin, then the phase
space ball of radius e centered at ro has a nonzero frac-.
tion of its volume lying in a another attractor's basin, and
this is so no matter how small e is. Thus there is always a
positive probability that an arbitrarily small uncertainty
in ro will put the initial condition in another attractor s
basin [4]. We say that the first basin is riddled by the
second basin.

This paper reports quantitative theoretical results [5]
for riddled basins and compares these results with numer-
ical experiments on a simple mechanical system [2]. The
theoretical results apply near the critical point where a
riddled basin G.rst appears as a system parameter is var-
ied. In this parameter regime the behavior becomes uni-
versal [6] in the sense that it is controlled by a few gross
system variables. We emphasize, however, that the qual-
itative behavior found persists away from the transition.

A general set of conditions under which riddled basins
can occur are as follows: (i) There is an invariant sub-
space M whose dimension dM is less than that of the
phase space d~, . (ii) The dynamics on the invariant sub-
space M has a chaotic attractor A for initial conditions
on M. (iii) For typical orbits on A the Lyapunov ex-
ponents for infinitesimal perturbations in the directions
transverse to M are negative, so that A is also an attrac-
tor in the full d» dimensional phase space. (iv) At least
one of the transverse I yapunov exponents, although neg-
ative for almost any orbit on A, experiences G.nite time
fiuctuations that are positive. (v) There is another at-
tractor not in M.

In order to illustrate the above, we refer to an example.
In particular, we consider the motion of a point particle of
unit mass moving in a two-dimensional potential V(z, y)
subject to dynamic friction (coefficient v) and sinusoidal
forcing,

dr/dt2 = vdr/dt —V'V +—fp sin(cut)xp,

where V(x, y) = (1 —x ) + (z+ x)y2, xp is a unit vector
in the x direction and v, fp, w, and x are parameters.
The phase space is five dimensional (d&,

——5) with co-
ordinates x, dx/dt, y, dy/dt, and 0 = (~t)mod2~. From
the symmetry of the potential [i.e. , V(x, y) = V(z, —y)],
we see that the dynamics is invariant with respect to
(y, dy/dt) ~ (—y, dy/dt), —and, as a consequence, y =
dy/dt = 0 specifies an invariant three-dimensional hy-
perplane [the subspace M in condition (i)] in the full
five-dimensional phase space [7]. In this invariant plane,
points are specified by these coordinates, x, dx/dt, and 8,
and the dynamics is described by the forced double-well
DuKng equation,

d2x/dt + vdx/dt —4x(l —x ) = fpsiniot,

which, for appropriate values of the parameters (v, fp, u)
has a chaotic attractor A in the invariant subspace M
[condition (ii)]. The set A will also be an attractor for
the full five-dimensional dynamical system, Eq. (1), if
condition (iii) holds. Figure 1 shows a plot of the larger
of the two transverse Lyapunov exponents, denoted h~,
as a function of the parameter x with the other parame-
ters held fixed at v = 0.05, fp = 2.3, and a = 3.5 (these
parameter values are used throughout the rest of this pa-
per). We see from Fig. 1 that h~ ( 0 [condition (iii)] for
x & x, = 1.7887. . . . This behavior can be understood as
resulting from the term (x+x)y2 in the potential. When
x+x & 0, there is a y2 potential well focusing orbits onto
the invariant plane; when x+ x & 0, the well becomes an
antiwell. Thus focusing is expected to prevail for large
enough x (i.e. , for x ) x,).

While the long time limit involved in the calculation
of h~ is negative for x & x„ there will also be epochs of
time during which a typical chaotic orbit spends an ab-
normally long time in the defocusing region. Thus, if such
an orbit is given a small perturbation in the direction
transverse to M, it temporarily moves in the direction
away [8,9] from M [condition (iv)]. A quantity (denoted
D below) characterizing the fluctuations in finite time es-
timates of h~ can be defined as follows. Consider a very
large number N of randomly chosen initial conditions on
A. For each initial condition r, (i = 1, 2, .. . , N) calculate
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FIG. 1. h~ versus x.

the finite time transverse exponent h~(r, , t) over the time
interval zero to t. In the limit t —+ oo all the h~(r, , t) ap-
proach h~ (with probability 1). For finite time, however,

there is a spread ((h~ —(h~))z) ~, where ( .) denotes
an average over i. This spread approaches zero inversely
with ~n. We now define the quantity D by the relation
(n && 1)

((hg —(hg)) ) = 2D/n.

For example, a plot of ((h~ —(h~)) )n /2 versus n ob-
tained numerically for Eq. (1) with x ) x, yields data
that are well fitted by a straight line, whose slope we take
to be an estimate of D.

In addition to the y = dy/dh = 0 attractor, for appro-
priate initial conditions, Eq. (1) also has orbits which
diverge to ~y~

= oo. We regard ~y~
= oo as a sec-

ond attractor [condition (v)]. Figure 2 shows a two-
dimensional slice (dx/dt = dy/dt = 8 = 0) through the
five-dimensional riddled basin of the y = 0 attractor for
x = 1.9. Each initial condition on a 1024 x 1024 grid
with x(0) and y(0) given by the horizontal and vertical
axes was followed numerically. A black dot was plotted
on grid points leading to ~y~

= oo, while no dot was plot-
ted for orbits tending to the attractor on y = dy/dt = 0.
Blow-ups on a suKciently finer scale of any small region
containing a point going to the y = 0 attractor always
show black dots, thus supporting our contention that the
y = 0 basin is riddled. (Note, however, that the ~y~

= oo
basin is not riddled: for almost any point in the black
region, a blowup about the point at large enough magni-
fication will yield a solid black picture. )

A general theory for cases like that in our example will
be reported elsewhere [6]. In what follows we quote two
predictions from Ref. [6] and then compare them with
numerical experiments.

Measure of the basins. —Say we draw a horizontal line
at y(0) = yo = const in Fig. 2. Now say we evaluate the

FIG. 2. Initial conditions in the ~y~
= oo basin are plotted

as black dots.

fraction P, of the length of that line that is in the basin
of the y~ = oo attractor. That fraction is predicted [6)
to scale as P, ~yo~", where the exponent il is given by

rt = fhgf/D

Thus, as the distance to the invariant manifold M be-
comes smaller, the fraction of the initial conditions in
the basin of A approaches 1. Nevertheless, at any small
nonzero distance (~yo ~

) 0), there is always some positive
fraction in the ~y~

= oo basin. Thus there are pieces of
the ~y~

= oo basin that are arbitrarily close to the at-
tractor [3] in y = dy/dt = 0. Hence, if noise is added to
motion on the noiseless attractor, there is the possibility
that the orbit is perturbed to one that goes to ~y~

= oo.
Thus arbitrarily small noise destroys the noiseless attrac-
tor. However, if the noise is small, it typically takes a
very long time to see this [6]. Figure 3(a) shows results
of numerical experiments (open circles) at x = 1.85 for
P, versus yo. Here P, is numerically estimated by tak-
ing many randomly chosen initial conditions on the line

y(0) = yo, evolving them forward in time to determine
which basin they lie in, and then taking the estimate of
P„as the fraction of these points that go to ~y~

= oo.
The solid line has a slope given by Eq. (4) with the nu-
merically determined h~ and D. The agreement is quite
good.

Fat fractal uncertainty exponent The resu.—lt (4) gives
the measure of the basins but says nothing about the
arbitrarily fine scaled riddling of the y = dy/dt = 0 at-
tractor basin. In the language of Ref. [10] the riddled
basin is a "fat fractal. " The fine scaled riddling of the
fat fractal basin can be characterized by the uncertainty
exponent introduced for fat fractals in Ref. [11]. Again
consider a horizontal line y(0) = yo in Fig. 2. Imagine
that we choose a point at random on that line [i.e. , we
choose x(0) randomly]. Now choose a second point at
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FIG. 3. (a) Data for P versus yo. (b) Data for (p) versus

random on the same line with uniform probability in the
interval of length 2e centered at the first point [i.e., we
choose a second x(0) within a distance e of the first]. We
ask, what is the probability that these two points are in
difFerent basins (one in the ~y[ = oo basin and the other
in the basin of the y = dy/dt = 0 attractor)? We denote
this probability (p) and define the uncertainty exponent
P by the small e scaling of (p): (p) e&. We can think of
(p) as the probability of making an error if we attempt
to predict which basin (x(0), y(0)) is in when x(0) has a
measurement uncertainty c. The result of Ref. [6] for P
is

P = h,~/4Dh)~(, (5)

where h~~ is the positive Lyapunov exponent for the dy-
namics in M [the positive exponent computed for Eq. (2)
for our example]. Figure 3(b) shows (p) versus e for
x = 1.9 (recall x, = 1.7887. . .) and y(0) = 0.5. Here

(p) is numerically estimated by randomly choosing many
points on the horizontal line y(0) = 0.5, then pairing each
such point with a point randomly chosen within e of it,
and then integrating (1) to determine which basin each
point lies in. The data in Figure 3(b) are indicated as
open circles with the sampling error indicated as verti-
cal line segments through the circles. The best fit line
to the data (shown as the solid line) gives a slope of
P = 0.017, a very small value. This value of P and the
scaling (p) e~ correspond to a decrease of (p) by only
about 27% when e decreases from 10 ~ to 10 ro. The

uncertainty exponent predicted by Eq. (5) with the nu-

merically determined values of h~, h~~, and D is about
0.009 corresponding to the dashed line in Fig. 3(b). Thus
the predicted P yields a decrease of (p) by about 15% for
e decreasing from 10 to 10 . Given the scatter ev-
ident in Fig. 3(b) and the small value of P, we do not
regard the discrepancy between the fitted and theoreti-
cal results as significant. The striking point, evident for
both the prediction and the fit, is that the decrease in (p)
is of the order of only tens of percent when ~ decreases
by 8 orders of magnitude. Thus a vast improvement in
the accuracy of initial conditions does surprisingly little
as far as reducing the uncertainty in determining which
attractor is ultimately approached.

To illustrate the origin of Eqs. (4) and (5), we consider
a simple two-dimensional map of the region y & 0, 0 &
x & 1, satisfying conditions (i)—(v). In the region 0 & y &
1 the map is (x„~r,y„+i) = (x„/cr, 2y„) for 0 & x„& cr

and (x„+„y„+,) = (x„/(1 —c ), y„/2) for c & x„& 1.
For y & 1, we imagine that the form of the map is such
that orbits falling in y & 1 all move to an attractor in

y & 1. The invariant line segment, y = 0, 0 & x & 1, is
a riddled basin chaotic attractor [6] if the perpendicular
Lyapunov exponent h~ = (2ri, —l)ln2 is negative (i.e. ,

0 & cr & 1/2). Now consider the horizontal line segment

y = yp, 0 & x & 1, where 0 & yp & 1. Imagine that we
choose an initial condition xp at random with uniform
probability distribution per unit length along this line
segment. The probability that the resulting orbit goes to
the y ) 1 attractor is the fraction P, of the line length in
the y ) 1 attractor's basin. Furthermore, the dynamics
in x for random xp is such that, on any given iterate, the
probability that 0 & x„& n is o., while the probability
that o, & x„& 1 is 1 —a. Referring to the y component
of the map, we see that y ~ 2y with probability o., and

y ~ y/2 with the probability 1 —o.. Let z = log&(1/y).
We now have a random walk in z in which a unit step
to the right (left) has probability 1 —a (probability cr;).
The fraction P, of the line segment is now given by the
solution to the following standard problem: Starting at
zo = logz(1/yo), what is the probability that the random
walker ever reaches z = 0 (corresponding to y = 1)? For
small h~ (i.e. , 1/2 —cr, ) 0 small), this probability is
proportional to yz with r? given by Eq. (4), and D the
diffusion coefficient of the random walk. This model can
also be used [6] to obtain Eq. (5). We argue in Ref. [6]
that Eqs. (4) and (5) are universal near the transition,
and this is consistent with our numerical results (Fig. 3)
for the ordinary differential equation system (1).
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