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Only a relatively small number of metallic clusters exhibit a stable spherical shape, We show that
the majority of such clusters tend to acquire a deformed shape, in order to minimize the fluctuating
part of the total energy, due to the bunching of the single particle electronic levels in a confined
geometry. We have found also that there is a large number of low lying shape isomers. Often the
deformation energy surface develops rather wide shallow pockets and such clusters are particularly
easy to deform, As a function of the electron number the cluster ground state deformations and
isomer energies show some remarkable regularities.

PACS numbers: 36.40.+d

Even though the initial experimental results on metal-
lic clusters concerning abundances, ionization potentials,
photoexcitation came to some extent as a surprise, the
natural interpretation was found immediately in terms of
electronic quantized orbits [1]. Many of the properties of
metallic clusters can be understood by considering only
the valence electrons [1, 2] as an essentially degenerate
electron gas in a cavity. For nonmagic clusters the ener-
getically most favorable configuration is likely to be non-
spherical. The need to consider deformed cluster shapes
has been recognized relatively early. In principle one can
infer information about the deformation of a cluster ei-
ther by analyzing the shape of the Mie resonance [1] and
likely also by a more detailed analysis of the mass abun-
dance or photoionization spectra. The theoretical analy-
sis of the role of deformation in metallic clusters has been
so far limited to relatively small clusters, with at most a
few hundred atoms [3—5], with one exception [6).

Here our goal is to give an overall picture of possi-
ble deformations for large metallic clusters, with parti-
cle number up to 3000. We consider axially symmetric
spheroidal deformations with the ratio of the major to the
minor axes up to 4:1. Because of the large range of parti-
cle number and deformations we cover, the model of the
metallic cluster we have chosen is somewhat simplified.
We describe the cluster in a jellium approximation and
the mean field experienced by the electrons is modeled by
an infinite square well potential. In spite of its simplicity,
this model gives an unexpected accurate picture of the
shell fluctuations. The spherical magic numbers we find
are equal to the numbers determined in a self-consistent
jellium local density approximation (LDA) approach [7]
and very similar to the ones obtained in Ref. [8]. Very
similar magic numbers were found in Ref. [9) for icosa-
hedral shaped clusters.

We shall limit our analysis to zero temperature, mainly
because of uncertainties in the finite temperature treat-
ment of clusters. Except for the amplitude, which di-
minishes significantly [7], the electronic shell fluctua-
tions do not change in character with temperature and

were still observed in large clusters [10]. The rela-
tively large particle number fiuctuations seem to require
a canonical treatment [ll]. Moreover, a finite tempera-
ture LDA should rely on a diff'erent parametrization of
the exchange-correlation energy. Furthermore, the con-
tribution of the ionic degrees of freedom to the entropy
is dominant [12] and thus a jellium approach, which ig-
nores it, is physically incorrect. One might assume that
the ionic contribution to the free energy does not exhibit
significant fluctuations and therefore could be ignored. If
that would be true, it would be difficult to understand
why electronic shells are replaced with geometrical shells
in large clusters [13].

There is compelling experimental evidence pointing to
rather difFerent structures of large cold (solidlike) and
warm (liquidlike) sodium clusters [13]. In lithium clusters
only electronic shell efFects have been observed so far [14].
At finite temperatures sodium clusters are rather easy to
deform [12, 15] and for that reason electronic degrees of
freedom are likely to play a major role in determining
the shape of a given cluster. For cold clusters, with a few
thousand atoms, the shape is seemingly determined by
geometrical efFects instead [13, 16].

We have chosen to explore the quadrupole deforma-
tion since it is the most likely one to occur, being charac-
terized by the longest wavelength. In certain instances,
the specific structure of the Fermi surface might con-
spire in such a way as to favor the onset of higher mul-
tipole deformations (in particular octupole), even be-
fore any quadrupole deformation sets in [4]. The sin-
gle particle levels have been determined by solving the
Schrodinger equation for an infinite square well with an
axial spheroidal shape. The shell corrections were ob-
tained by subtracting the smooth part of the total energy
using either the Strutinsky procedure [17) or the Weyl
analytical expression [18]. Within such an approach one
cannot correctly describe the odd-even eifects (such as
ionization potentials, separation energies, etc. ), because
spin polarization is not accounted for.

In Fig. 1 we show the fluctuating part of the cluster
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FIG. 1. The shell correction part of the total energy, deter-
mined for the most favorable configuration of a given cluster,
solid line. The dashed line shows the same quantity computed
for spherical geometry only. The numbers in the upper part of
the plot designate the spherical magic numbers. The numbers
in the lower part correspond to some of the most prominent
minima of deformed clusters only.

total energy, computed for both spherical clusters and de-
formed clusters, evaluated at the minimum of the total
energy for each particle number. By allowing a cluster
to deform the amplitude of the shell correction is signif-
icantly reduced and much more structure emerges. The
notable beating minimum [19], linked with the so-called
supershells [8], is however, rather well defined as are the
deep minima, corresponding to the spherical magic num-
bers. Besides the almost periodic oscillatory character of
the shell corrections in the variable N ~s (N—number of
valence electrons), one can also see a remnant of the su-
pershell beating minimum for deformed clusters as well.
In the region around N = 1000 there is an easy to spot
area, see Fig. 2, both on prolate and oblate sides, where
the amplitude of the shell corrections is rather small.

The interplay between the liquid drop deformation en-
ergy and the shell corrections lead to a quite complicated
energy surface as a function of deformation and particle
number, see Fig. 2. In Fig. 3 we display the ground
state deformation for each cluster as a function of N~~s

and in Fig. 4 the energy difFerence between the energy
of the first shape isomer and the ground state energy for
each cluster.

In the vicinity of each known spherical magic num-
ber there is a well defined valley in the deforrnation-
particle number plane. Below the first supershell min-
imum (N & 1000) these valleys are rather stiff' in the
N ~ direction. Therefore these clusters are easier to de-
form and moreover the probability to find shape isomers
is rather high. One can draw the same conclusion from
Fig. 4, which shows that there are somewhat more low

lying isomers for N ( 1000 than for N ) 1000. Unfortu-
nately we could not find a simple way to characterize the
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FIG. 2. The contour plot of the deformation energy (scaled
with a factor N '

) as a function of N' and the natural log-
arithm of the ratio of the axes of the spheroid (c = R///R~).
The oblate shapes correspond to the negative values of the
logarithm of the deformation.
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FIG. 3. The ground state cluster deformations (c
R// jRJ ) ~

average stiKness and width of the deformation energy.
Quite often in the region N & 1000 the deformation
energy is rather shallow as a function of deformation.
On the other hand for K ) 1000 the character of the
deformation energy changes. The valleys are somewhat
slanted and for that reason the number of relatively low

lying shape isomers is reduced. Only for particle num-
bers roughly half-way (on the N~~s scale) in between
two consecutive spherical magic numbers there is a clus-
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FlG. 4. The excitation energy of the first shape isomer of

each cluster. The highest and sharpest peaks correspond to
the spherical magic clusters.

ter for which prolate and oblate shapes have essentially
the same energy. For the clusters in the region K ( 1000
the deformation of the lowest lying isomer can be either
similar or not with the deformation of the ground state,
unlike the larger clusters. This difference between the
lighter and heavier clusters can be understood by com-
paring the magnitude of the shell corrections, which are
roughly of the same order of magnitude for all clusters
(more accurately they slowly increase as N'is [20j) with
the smooth part (liquid drop) of the deformation energy,
which is proportional to N i3.

The enhanced stability of spherical clusters can also
be characterized by the energy of the Erst shape isomer.
In this respect spherical and deformed clusters are again
very similar. The highest and sharpest peaks in Fig. 4
correspond to spherical magic numbers. Roughly at half
distance between two consecutive spherical magic num-
bers there is another peak, about half as high and wider,
corresponding to particularly stable deformed clusters.
The position of these peaks correlates almost perfectly
with the additional minima in the fluctuating part of the
energy, see Fig. 1.

A certain regularity in Fig. 3 is rather obvious. Start-
ing from a spherical magic cluster, with increasing K a
cluster acquires at first an oblate deformation (which in-
creases with N) and at some point the cluster suddenly
becomes prolate, with a large deformation (which then
decreases with N). At the transition point the excita-
tion energy of the shape isomer vanishes, which favors
the occurrence of shape coexistence. It will be interesting
to establish whether this sharp transition might become
more gradual or even change completely if more compli-
cated shapes would be considered. The N i scale in Fig.
3 gives the impression that there are approximately equal
numbers of oblate and prolate clusters and relatively few

spherical ones. An actual counting shows that there are

roughly twice as many prolate clusters as compared to
oblate ones and twice as many oblate as spherical clus-
ters. However, small changes of the background (in par-
ticular the discrete nature of the ion cores, a smoother
boundary, thermal fiuctuations, etc. ) can lead to rather
noticeable changes of the potential energy surface of a
cluster.

The translation of our results in terms of available ex-
perimental data seems to be still an ambiguous proce-
dure. One might be tempted to conclude that the deep
minima on the deformation energy surface should be cor-
related with the additional structures observed in abun-
dance spectra. We have performed such a comparison,
between our results, Fig. 1, and the experimental data
of Refs. [10, 14]. Even for the spherical magic numbers
there are notable differences between what the present or
other theoretical studies predict and the observed ones.
However, many of the additional minima in Fig. 1 corre-
late rather well with the positions of the other structures
seen in experiments. We see several reasons here for not
performing such a detailed comparison at this time. As
remarked above, the deformation energy surface exhibits
a rather complicated structure, there are many local min-
ima rather close in energy to the ground state. In many
eases the deformation energy surface is rather shallow
as well and the absolute minima are not well separated
from other possible configurations. One might then rea-
sonably expect that in some instances a relatively deep
minimum will not manifest itself very prominently in the
experimental spectra, simply because of its relatively low
statistical weight. The current interpretation of the ex-
perimental abundances is done in terms of single atom
separation energies, which as we have mentioned earlier,
cannot be described accurately in the framework of our
model. Moreover, shape dynamics might play a role dur-
ing a single atom evaporation process. In spite of these
rather pessimistic conclusions we think that here we have
been able to point to a rather rich shape dynamics of
the metallic clusters (even though we have considered
only static properties). One can expect that the kinet-
ics of both cluster aggregation, cluster evaporation and
fragmentation will be markedly influenced by the rather
complicated structure of the deformation potential en-
ergy surface. One might speculate that during the aggre-
gation or evaporation process a cluster will follow these
valleys of the potential energy surface. Namely, a pro-
late cluster will become less and less deformed through
the addition of atoms and eventually will swing to the
other side by becoming more and more oblate. There is
an intriguing possibility that the clusters with particle
number corresponding to these sudden jumps in shape
(located at roughly mid-distance between two consecu-
tive magic numbers on the N i scale) might serve as ac-
cumulation points during either aggregation of a cluster
or atom evaporation, and for that reason be somewhat
prominent in the abundance spectra. A comprehensive
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study of the role of higher multipoles is very much war-
ranted and also of the role of a net charge, which leads
to a dramatic reduction of the effective surface tension.

We thank J. Borggreen for sending us a file with their
experimental results [10] and W. Nazarewicz for a pro-
gram to compute the shell corrections using the Stru-
tinsky procedure. We acknowledge discussions with G. F.
Bertsch, E. Bogomolny, N. Pavloff, D. Tomanek, and V.
Zelevinsky. Support was partially provided under NSF
Grants No. PHY-92091690 and No. PHY-9017077.

Note added. Recently S. Frauendorf and J. Dudek
have brought to our attention Ref. [21], where shell cor-
rections have been considered in ellipsoidal cavities for
systems with N & 950 and D. Tomanek has made avail-
able to us the preprint [22], where the results for N & 850
quoted in Ref. [6] are presented.
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