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A novel mathematically simple and physically transparent derivation of the Efimov effect is pre-
sented by means of a new efficient method for solving coordinate space Faddeev equations. The
method, which is directly applicable on small computers, is used to obtain energies and wave func-

tions of the Efimov states.
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The Efimov effect [1] appears in a system of three parti-
cles interacting by short-range two-body potentials. The
system can have infinitely many bound states, if two or
three of the binary subsystems have a bound state at
zero energy. A variety of different systems may possibly
exhibit this unusual behavior [2].

The effect was first found by using the Schrédinger
equation in an analysis of the asymptotic behavior of the
three-body wave function [1]. This derivation is only con-
cerned with the very large distances and the formulation
therefore does not allow calculations of either energies or
wave functions of the system. The effect was later con-
firmed in terms of momentum space Faddeev equations,
where the rather complicated formulation exploited the
fact that the kernel of the integral equation is not com-
pact in certain points [3]. The effect was also investigated
by use of the Born-Oppenheimer approximation, which
is applicable only to a system of one light and two heavy
particles [4].

The purpose of this Letter is to (i) provide a novel
mathematically simple and physically transparent for-
mulation of the Efimov effect, (ii) compute higher order
corrections to Efimov’s fundamental equation, (iii) intro-
duce a new efficient method, directly applicable on small
computers, for solving coordinate space Faddeev equa-
tions, and (iv) employ the method numerically to obtain
energies and wave functions of the Efimov states.

Faddeev equations.—The three-body system may be
described by any of the three sets of coordinates shown
in Fig. 1. They are related to the usually employed Ja-
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FIG. 1. Three possible sets of coordinates describing the
positions of the particles of equal mass labeled by 1, 2, and
3. The relative coordinates are called z and y, respectively,
between two particles and between their center of mass and
the third particle. Thus x =r; —r3, y = —r1 + (r2 + r3)/2,
where r; is the coordinate of the ith particle. The prime and
double prime coordinates are analogously defined.
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cobi coordinates by a mass-dependent scaling. The total
wave function of the system is written as a sum of three
components, each expressed in terms of one of the three
different sets of coordinates:

T =9p(x,y) +9'(x,y) + " (x",¥"). (1)

This three component wave function is rather flexible
and allows a description of different three-body struc-
tures by means of few angular momenta in each compo-
nent. These wave functions satisfy the Faddeev set of
equations [5]

(T = Eyp+Vi(y+ 9" +9") =0,
(T — By’ + Va($ + 9" +4") =0, (2)
(T - By +Vs(¥ +¢' +9") =0,

where F is the total energy, T is the kinetic energy oper-
ator, and V; (V3, V3) is the interaction between the par-
ticles 2 and 3 (1 and 3, 1 and 2). For simplicity we
consider V; = Vo, = V3 and particles of equal mass m.
The hyperspherical coordinates are then defined by

p=(1/2 2* +2/3 y*)'/?,

a = arctan(/1/2 x/ 2/3 y)

for each set of coordinates leaving invariant p, but not
the hyperangle a.

As in [1] only zero orbital angular momentum, respon-
sible for the Efimov effect, is allowed in each component.
Furthermore, in our case of an attractive [-independent
central potential this component accounts for more than
98% of the norm of the wave function [6]. The Faddeev
equations in Eq. (2) then reduce to the three identical
equations

®3)

1
(Tp T - e)w(p, o)
+v(psina){Y(p,a) +(p, ') +P(p,a")} =0, (4)

where € = 2mE/h?, v(z) = 2mVi(2+/2)/h*, and the ki-
netic energy operators are
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52 15 out the four angular variables of x and y, is performed

T,= _p—s/z_p5/2 + =p72, by an operator R given as [7

i dp? 4 (5)
Ta= " sin(2e) 8a? sin(20) —4+ sinz a costa’ i sin(2¢) sin(20)

7/2—|7/2—p—q
A ~ s / /

where [, and [, are the orbital angular momentum oper- X / | do/ sin(2/)¢(p, ') , (6)
ators with respect to x and y. o=

To solve Eq. (4) we choose to work in the first coor-  where all angular momenta are assumed to be zero and

dinate system. The two functions defined in the second the angle ¢ depends only upon the masses of the par-
and the third system must therefore be “rotated” into  ticles and equals w/3 when the masses are equal. The
the first system. This rotation, which expresses one set ~ Faddeev equation, after integration over the four angular
of coordinates by another and subsequently integrates variables, becomes

J

n/2—|n/2—¢p—cl ,sin(2a’)

1 . 2 AN G
(T,, + ;2‘Ta - 6) Y(py ) + U(Psma){?/)(ﬂ, a) + 028 Jpa do MWP»CV )} =0. (7

Method of solving.—We solve this integro-differential Faddeev equation by applying the method previously used to
solve the three-body Schrédinger equation [8]. The wave function 1 is expanded in a complete set of hyperangular
functions @,

bloa) = 3 L) 2ap0) | (8)
A

p5%/2 sinacosa

where @), are the eigenfunctions of the a-dependent part of the Faddeev equation

_ 824))\(}), a)
da?

n/2—|n/2—¢—al

+p2v(psina){‘1’k(p’a)+m —al

m@mmdﬁ=Ammumm. ()

The wave functions f) are solutions to a coupled set of ! where 79 is defined by p?v(ro) = A. [For potentials equal
radial differential equations. The convergence in ) is ex- to zero outside a finite radius, ro approaches this radius
tremely fast and the lowest A alone gives a very good ap- as p increases, for exponentially decreasing potentials 7¢
proximation, except in the presence of avoided crossings diverges logarithmically, and for potentials behaving like
[9], which does not occur in our case. We shall therefore =V (v > 2), ro diverges like p?/¥. These types of poten-
restrict ourselves to the lowest value of A, which as we tial provide asymptotically decreasing ro/p.] For p > ro
shall demonstrate later is responsible for the appearance the potential in Eq. (9) vanishes unless a < r¢/p and
of the Efimov effect. The diagonal radial equation, where then the equation to first order in ro/p reduces to
A(p) now serves as an effective potential, is then

82
L M)~ USSR NP
(— ;02 —Qa(p) + A(P)pz 1/4 - e) flp) =0, (10) { da? }

) +p2v(pa){tb>\(p,a)+aM} =0. (12)
where the term Qx(p) = (<I>,\|§;—77|(I>)\) is small and at sin(2¢)
large distances proportional to 1/p%. In region I, where a > ro/p, the potential is negligible
Efimov effect.—Let us now consider the asymptotic be- and this equation becomes
havior of A for small and large p in a short-range poten- 2
tial, i.e., a potential which falls off faster than the inverse (_i_ - )\) &P (p,a) =0 (13)
square of the distance. For p = 0 the lowest solution of da? A ’

Eq. (9), which obeys the boundary conditions of being
zero for both a = 0 and 7/2, is sin(2a) with an eigen-
value of 4. The eigenvalue A for small p is now obtained
in first order perturbation theory as

with the solution sin[(a — 7/2)+/A] vanishing at 7/2 in-
dependent of A.

In region II, where o < 79/p, we have instead the equa-
tion
A =4+ 3v(0)p%. (11) 82

_ CD(H)
{ a(pa)g +v(pa)} A (p! a)

120 (p, ¢)
sin(2¢) '

To solve Eq. (9) for large p we divide the o space into
two regions I and II, where p?v(pc) respectively is more

14
than and less than A. The dividing point equals ry/p, s

= —v(pa)a
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where the small term \/p? has been neglected. If \/p? is
not small at large p, the resulting configuration does not
exhibit the Efimov effect; see below. The total solution
to Eq. (14), the homogeneous plus the inhomogeneous, is
now

481 (p, ¢)
sin(2¢) ’

where the homogeneous solution 1 (pa) is the wave func-
tion describing the state of zero energy in the potential
v(pe), which outside the potential (pa > ) has the form
pa + a, where a is the scattering length.

The eigenvalue equation for A now arises by matching
of the derivative of the logarithm of the two solutions
at the point a@ = 7ro/p. To first order in ro/p we then
immediately obtain

~VAcos(VAg ) + Jesin(VAT)

2" (p, ) o go(pa) — (15)

= Lain(VAZ) (1442 222) | o)
a 2 PP
where we inserted ¢ = /3. Neglecting the first order
term in ro/p we get the zero order equation investigated
by Efimov [1]. For infinite scattering length (a = o0)
it has a solution A, = —1.01251, which substituted
into Eq. (10) implies that the radial equation asymp-
totically has an effective attractive potential given by
—1.26251/p?, which in turn results in an infinite number
of bound states.
The simple derivation above makes it easy to compute
various correction terms. For example, the next term in
the expansion of A in powers of ro/p for a = oo is

A= —1.01251 —1.375 22% , (17)

where 7y is defined by v(rp) = Aso/p?. As another exam-
ple, for finite a > 7¢, the first two terms of A in powers
of a/p are

A= (1—23> . (18)

These two different expansions explicitly show that the
large distance limit of A has a singular point at a = oo.

Recently Efimov studied other types of corrections by
use of the three-particle zero-range theory [10]. He cal-
culated the corrections to the three-body binding energy
and to the effective long-range radial potential to first or-
der in the effective range 7. of the short-range two-body
potential. He showed that in the special cases, where
Te K p < a, the correction to the effective radial po-
tential has the form r./p3. The derivations are based
on perturbation theory and restricted to large p values.
The procedure is complicated and lacking all numerical
values.

The effective range differs from our expansion param-

eter 1o, which has a simple geometric interpretation and,
for example, in a square well potential is equal to its ra-
dius. For a given scattering length, r. is proportional to
ro with a proportionality factor depending on the shape
of the short-range potential. Thus Eq. (17) (divided by
p?) is consistent with the results of [10] with the differ-
ence being that our method enables us to calculate the
proportionality coefficient as well as the expansions in
the other cases [see Egs. (11) and (18)].

Our practical procedure, where we calculate the radial
potential strictly for all distances, provides the tool to
calculate the three-body binding energy directly without
use of perturbation theory unlike [10] where the energy
perturbation is furthermore a correction of an unknown
energy determined by the unknown potential at small
distances.

Numerical illustration.—The numerical implemetation
of the method, treating one radial point at a time, re-
quires then rather little computer memory. This conse-
quently allows dense grids and therefore improved accu-
racy and stability, still with modest time requirements.
It is also worth mentioning that this method allows us
to calculate both discrete and continuum spectrum wave
functions of a three-body system by specifying appropri-
ate boundary conditions in the radial equation.

For illustration we show in Fig. 2 the lowest eigenvalue
of Eq. (9) as a function of p for a two-body Gaussian
potential. The strength of the potential is varied and the
results for three different scattering lengths are shown.
The p = 0 limit is 4 in all cases; see Eq. (11). For posi-
tive a the eigenvalue returns to 4 at infinity [see Eq. (18)],
whereas negative a, corresponding to a finite binding en-
ergy of the binary subsystem, leads to a parabolic depen-
dence of p. This dependence, A\(p) = —ezp?, leads (after
dividing by p?) to a constant potential —e; in the radial

Pl B |
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FIG. 2. The eigenvalue X of Eq. (9) as a function of p for
a Gaussian potential S exp(—r2/b?) of range b and depth S
corresponding to scattering lengths of, respectively, 12b (dot-
dashed curve), infinitely large (full curve), and —12b (dashed
curve). The term Q» in Eq. (10) is blown up by a factor of
100 and is also exhibited as a function of p.
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FIG. 3. The wave functions as a function of p for the four

lowest Efimov states [energies —2.3 x 107! (solid), —4.2 x
10~* (dot-dashed), —8.0 x 10™7 (dashed), and —1.6 x 107°
(dotted) in units of #%/2mb?] obtained from Eq. (10) and
corresponding to the a = oo potential of Fig. 2. The plotted
quantities are arbitrarily normalized for better visibility.

equation, which means that asymptotically the energy
scale is shifted by —e;. In fact, €, turns out to be the
binding energy of the binary subsystem [11].

When a approaches infinity, the eigenvalue A(p) ap-
proaches Ao, as p increases until p =~ a where it starts
to deviate and eventually either reaches +4 [Eq. (18)]
or diverges parabolically to —oo. At finite distances we
observe the attractive pocket in the effective potential,
which employed in Eq. (10) may lead to one or more
bound three-body states. In Fig. 2 is also plotted the
term in Eq. (10) which arises from the variation of the
eigenfunction ®, with p. It is contributing at most on
the 1% level and it has no influence on our general argu-
ments.

The radial wave functions and the related total ener-
gies are now obtained from Eq. (10) for the potential
of infinite scattering length used in Fig. 2. The small
distance behavior is found by numerical integration and
matched outside the potential to the known analytical
solution, i.e., the modified Bessel function K5  divided
by \/p. The resulting four lowest Efimov states are shown
in Fig. 3. The first of these is an ordinary solution concen-
trated in the pocket region of the potential, whereas the
higher lying states all extend far out into the asymptotic
tail region. They are all, except the lowest, very sensitive
to the asymptotic behavior of A. The wave functions are
similar before their exponential falloff where the last os-
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cillation of the next eigenfunction continues. The nodes
are regularly spaced in this logarithmic plot until p ~ a
where the deviation from the p~2 asymptotic behavior of
A prevents further continuation.

Summing up, the Efimov effect is derived from coor-
dinate space Faddeev equations using the method of ex-
pansion in terms of hyperangular functions, and the en-
ergies and wave functions of several of the lowest Efimov
states are calculated. The method appears to be gen-
eral and applicable to any three-body system regardless
of the particular type of interaction between the par-
ticles. However, in this Letter we restricted ourselves
to l-independent attractive potentials; we assumed equal
masses of the three particles and allowed only the dom-
inating components in the expansion with zero angular
momenta. These simplifications can be avoided without
significant loss of numerical efficiency, but with an in-
creased notational complexity. More detailed work is in
progress.

The new derivation is self-contained and physically
transparent and the method allows analytical investiga-
tion of the asymptotic behavior of three-body systems
as well as efficient numerical calculation of energies and
wave functions.

* On leave from the Kurchatov Institute, 123182 Moscow,
Russia.
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