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Generalized Symmetries and w Algebras in Three-Dimensional Toda Field Theory
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After establishing a formal theory for getting solutions of one type of high-dimensional partial
diN'erential equation, two sets of generalized symmetries of the 3D Toda theory, which arises from a par-
ticular reduction of the 4D self-dual gravity equation, are obtained concretely by a simple formula.
Each set of symmetries constitutes a generalized w algebra which contains three types of the usual w

algebras as special cases. Some open questions are discussed.
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W is a particular generalization of the Virasoro alge-
bra which contains conformal spins 2, 3, . . . , ~ [1,2].
The Virasoro algebra is a special subalgebra of W con-
taining only the spin-2 field: the two-dimensional (2D)
energy-momentum tensor. The importance of the Vira-
soro algebra in string theory, integrable models [say,
Korteweg-de Vries (KdV) hierarchy], 2D gravity, and
conformal field theory is well known [3,4]. It is natural
to search for a higher spin generalization of the Virasoro
algebra which leads to the W algebra. Recently one has
also known that W and a certain contraction of W
called w [5], play an important role in some different
areas of physics, such as the si(~) Toda theory [6,7], in-

tegrable models (like the Kadomtsev-Petviashvili (KP)
equation [8,9]), membrane theory [10], and 8'string and
W gravity theories [111. w algebra is defined by the Lie
bracket

[ww2]=[(m2 —1)n~ —(m~ —1)n2]wppf [+ppf

(m~ 2).
The "classical" w and "quantum" w were realized us-

ing two-dimensional bosonic [12] and fermionic [13]
fields. There exist various realization methods of ~
F'or instance, ~ emerges as a symmetry group in the
study of self-dual gravity, which can be formulated as the
si(~) Toda theory [6]. And w also appears as a sym-
metry group of the KP hierarchy.

In Ref. [14], David et al. proved that the KP equation

9=, Z, Z=x+ t,
Z

(2)

where a are the simple roots of sl(iV+ I ), becomes the
3D (2+ I dimensional) Toda equation [7,17]

t)t)p+exp( —6, P) =0,
with

(3)

u (Z, Z, so+i W) =
Attt; (Z, Z), —

and p(Z, Z, )=s—8, 'u(Z, Z, s). The w currents of

has additional symmetries which obey a Kac-Moody-
Virasoro based on a subalgebra ot VirEBsl(5, R). More
recently, the author found that the KP equation possesses
more fruitful symmetries [9] by using the extended
master-symmetry approach [15]. The Kac-Moody-Vira-
soro [14] and w are special subalgebras of the general-
ized symmetry algebra of the KP equation [9]. Now a
natural question is the following: Is there such a type of
generalized symmetry algebra in other physical fields?
Obviously, the first work we hope to do is to answer
whether the more generalized symmetry algebras (which
contain w as a special subalgebra) can be found in the
sl(~) Toda theory.

I n the tV ~ limit, the 2D sl (N + 1 ) Toda field
theory, described by the equations [16]
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(3) have been studied in Ref. [7], where w3 and w4

currents are given explicitly. In this Letter we study the
symmetry algebra in an alternative way.

Next we develop a simple direct formal method for
searching generalized symmetries of a type of high-
dimensional partial diAerential equations. The general-
ized symmetries and Lie algebras for the 3D Toda equa-
tion (2) are then given.

A formal theory for searching symmetries in high
dimensions W.—e consider a generalized (M + 1 )-
dimensional partial differential equation (PDE) with the
form

cr„=K'cr= K(u+ ecr) l, =p,( 6

which means (S) is form invariant under the transforma-
tion

(6)

with infinitesimal parameter t. . Now we search for the
solutions of (6) which have the form

uix, K(t, x l, xz, . , XM, u, u&„ux2, . . . ) =K(u), M

(s)
~here K(u) is an arbitrary function of the space time and
space derivatives but is not dependent on time derivatives.
The KP equation and the 3D Toda equation (with "time"
Z or Z) are two special examples. A symmetry of (S) is

defined as a solution of the linearized equation of (S)
[i 8],

a „,[0l =0, i.e., cr [0] =g (t, x q, x 3 . . . , xM ) —g, (io)

a[k] =(e„'K' -a, )—a[k —i] = (e„'K' -e, ) 'a—[k —2]

= (c), ' K' —c), ) "g,

where 8„'=f"dx is an indefinite integral operator. Be-
cause of the linearity of the symmetry definition equation
(6) we get a generalized formal solution of (6)

(f g ) g gf( —k)(g —lK g)k
k=0 k =Ok =0

with infinitely many arbitrary functions f„and g„.
It is interesting that for the KP equation

u„=(6uu, —u„„),—3u

if g„(y, t ) is fixed as

n1

(i 2)

(i 3)

where =f(t) is an arbitrary function of t, f
=8, f, and 8, ' =f 'dt. Substituting (8) into (6)
directly we have

g f +' cr„[k]+ g f "+' cr„,[k —1]
k=0 k=1

= g f' "'"K'a[k —i]
k=1

Since f is an arbitrary function of t, deleting the

coefficients of f t +' in (9) yields

cr(f ) = g f t " a [kl,
k=0 we reobtain the truncated generalized symmetries of the

KP equation given in Ref. [9]:
n+1

cr (f) = g f "+' " ( —ci +6x8 u —x38„'c)~ —t), ) y", n =0, 1,2, . . . , a~(f) =0 (m (0),
2n!3" k =O

(is)

a„(f)= g f "(z)(—ti —8 'yzzc),')'g„(z, s)
I& =0

(n=O, i, 2, . . . ),
(i 6)

cr„(f) = g f (Z)( —8 8 yzzci ) g (Z s)
k=0

where arbitrary function f has been rewritten as f "+' .
The details about the symmetries and algebras of the KP
equation can be found in Ref. [9].

Generalized symmetries and algebras of the 3D Toda
theory. —Based on the general discussions above, we get
two sets of generalized symmetries of the 3D Toda equa-
tion (3):

truncated to

crp(f) =Ap f(Z')dZ',
n —

1

g fn —
I k( g

—
g

—
~~ g2)k n

n! k=o
(i 9)

(n =1,2, . . . ),
and cr„(f) can be obtained from a„(f) after replacing
(f,Z) by (f,Z), where arbitrary function f has been
redefined as f " ' . The first few cr„(f) read [f
=(6/Bz)f]

(n =0, 1,2, . . . ),
where 8 ' and 8 ' are indefinite integral operators with
respect to Z and Z, respectively. In this paper, we focus
our attention on the truncated symmetries of (16) and
(17) only. Similar to the KP case, after finishing some
tedious calculations, we find that if g„and g„are fixed as

g„=g„= A„g" (n =0, 1,2, . . . )
1 (i8)

n.
with a constant A„, the formal series (16) and (17) are

4100

ap(f) =Aii J f(Z')dZ', cr)(f) =A (f(Z)s,

a&(f) = Azf(Z)y + —,
' A—gs',

cr3(f) =2A3fc) 'riizzriiz. A3f&ripz+ 6 A3f&',

a4(f) = 3A4f8 'pzz(pzz —pz, )

+2A4f(se 'y»y„+ —,
' yz)

—
2 A+s pz+ 24 A+s

(2o)

(2i)

(22)
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under the Lie product

[A, 8] =A'8 —8'A—: [A (a+ e8) —8(&+&A) ] I.=o

(24)
As in the KP case [9l, to get the truncated symmetries
(19), o.„(f),we can use c) Fz =F because we have fixed
the integral functions g„(f) for all n Ho.wever, to verify
the generalized Lie algebras (23) constituted by these
symmetries, we have to use the identity

cI F(s,Z, Z, rirz, r/rz, . . . ) =cl (F+0)=6 F+h(Z, s)
(2s)

and fix the integration function h(Z, s) such that the
right-hand side of Eq. (23) is really a symmetry and coin-
cides with that given by Eq. (19). That is because the
Lie product (24) between two known symmetries will
yield a unique new symmetry [19] while we have not yet
fixed the integral function of the new symmetry. The
deeper reason comes from the fact that we cannot define
an inverse operator of a partial diA'erential operator when
they act on a function with arbitrary boundary condi-
tions. It is interesting that the subalgebra constituted by
o„(f) is isomorphic to the symmetry algebra of the KP
eq u ation.

Now we would like to list some interesting subalgebras
of (23) instead of tedious concrete verification of (23):

(i) It is interesting that from the general expressions of
(19), the "time Z" independent symmetries

cr„=—o„(1)= ( —6 —6 'yzzc),') " 's" (26)
n!

constitute a commuting algebra:

[o„,a ] =[a,a„]=[a,cr. ] =0. (27)

(ii) Starting from the general expression (19), we get
the so-called master symmetries [1S] of degree ic for the
2D Toda equation:

( —g —g 'y -g')" " 's (28)&n, k

k =1,2, . . . , n —1.
Especially the master symmetries of degree 1 constitute
the Virasoro algebra I:

[r„,,r, ]=(m —n)r +„2, , (29)

or equivalently

[a, (r), a (t)] =(m —n)cr ~„—q(r) (m, n=0, 1,2, . . . ) .

(30)
(iii) If we take m =n =2, f=exp(rZ/a) (r =0,

After selecting constants 80 =
2 C, A i

=
2 C, 2 2

= 1,
A3=C ', A4=2C, . . . (C=const), the detailed calcu-
lations show us that these symmetries constitute a gen-
eralized Lie algebra

[crm(f )),o„(f2)]=a~+„z[(n —1)f ~ fq —(m —1)fzf~],
nm ~ 0, o (f) =0 (m &0) (23)

+ 1, + 2, . . .), and a =const, we get the Virasoro algebra
II, cr"—= a2(exprZ/a):

[cr",cr'] =—(r —s)a'"+' (r, s=0, + 1, ~2, . . .).I

Q
(31)

fH, n~ 2 (33)

(vi) In algebra (33) for m ~ 2, taking f=exprZ
(r=0, ~ 1, +'2, . . .) leads to the standard w algebra
(w type I algebra) with cr' —= cr (exprZ):

[o",o„'] =[(n —1)r —(m —I )sla'++'„—2, m, n ~ 2.
(34)

It is known that a" is a generator of conformal spin m

[2,7,20]. In other types of representations of w algebra,
obtaining the higher spin generators is very difficul [7]
while it is quite easy to get the generators for any high
conformal spin in our symmetry representation (23) with

f=exprZ
(vii) The first type of w algebra (34) is a generaliza-

tion of the Virasoro algebra II. The second type of ~
algebra (w type 11 algebra) is a generalization of the
Virasoro algebras I and III:

[cr",a„'] = [(n —
1 )r —(m —

1 )s]a" ~'„—~2,
1 r+s—

QP
(3s)

where a=const, p is a fixed integer, and o." —= a~[(I/a)
x Z' r ]. The special cases (r =s =p, a = 1) and (m = n

=2p=2) are just the Virasoro algebras I and III. To our
knowledge no one has studied such types of algebras.

(viii) w type III algebra is a much stranger w alge-
bra which is the generalization of the Virasoro algebras
II and III [cr,"—=a2(Z" ~expiZ)1:

[a,a'] = (r —s)a;+' "+—(i j)cr;"+'. — (36)

The algebra will reduce back to the Virasoro algebras II
and III for (r =s =0) and (i =j=O,p= 1), respectively.

In this Letter, two sets of generalized symmetries of
the 3D Toda field equation are obtained by using a simple
method which yields a simple formula for a general type
of high-dimensional nonlinear PDEs. Every set of sym-
metries constitutes a generalized ~ type algebra which
is isomorphic to that of the KP equation. Eight types of
interesting subalgebras are also discussed. There are
three types of Virasoro subalgebras and three types of w

subalgebras. w type I algebra is a standard one where
the generators for arbitrary conformal spin are given.

4101

(iv) When we take m =n =2, f=(I/a)r' (r =0,
+ I, + 2, . . . ), and a =const, the Virasoro algebra III is
obtained immediately [a' =a2—(r "/a)]:

[cr",cr'] =—(r —s)cr'+' ' (r, s =0, ~ I, ~ 2, . . . ) . (32)1

e
(v) From Eq. (23), we know that if we restrict m ~ 2,

then cr (f) constitute a generalized w algebra:

[0 (ff), cr„(f2)]=o +„-2[(n—1)f(fz —(m —1)fzf)]
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The other two w type algebras are less studied in the
literature.

The method presented in this paper can easily be ex-
tended to other types of linear and nonlinear high-
dimensional physics problems which can be described by
some linear or nonlinear PDEs. For a linear physics
problem, we can directly use the method given here to ob-
tain infinitely many special solutions, say, Eq. (12) for
(6) and the fixed function u for the concrete physics
problem. For a nonlinear problem, we can get infinitely
many symmetries at first, and then using these sym-
metries to get the infinitely many group invariant solu-
tions of the original nonlinear problem simply by setting
et =0, where cr is an arbitrary symmetry [21].

It is important that in higher-dimensional cases, for
some quite general sets of equations, there do exist
infinitely many symmetries irrespective of their integra-
bility. From Eq. (16), we have seen that the generalized
equation (5), whether it is integrable or not, has an
infinite number of symmetries given by Eq. (12) with two
arbitrary functions. That is to say, in high dimensions,
an integrable model has an infinite number of sym-
metries, but the inverse is not always true. Tamizhmani,
Ramani, and Gramaticos [22] have given a concrete ex-
ample which is a nonintegrable model that has four sets
of infinitely many truncated symmetries X5, A6, X7, and
Ag.

From the discussions above we know that the general-
ized symmetries can be obtained from some diAerent in-

tegrable models such as the KP, IDLWE (intergro-
differential linear equation), and 3D Toda theory. Natu-
rally, various interesting open questions arise: (I ) One
has known that the 4D self-dual gravity can be formulat-
ed as the sl(~) Toda theory [2,6], so it is worth establish-
ing what the corresponding theory in 4D self-dual gravity
is. (2) In the introduction we pointed out that the w

algebra plays an important role in various physical fields,
like string theory, ~ gravity, and membrane theory, then
can the generalized symmetry algebra as in the KP and
Toda theory be found in other theories, and how can one
construct the corresponding string theory, membrane
theory, and gravity theory which have the generalized w

symmetry? (3) The quantum w algebra has also been
obtained [12,13]. What is the quantum version corre-
sponding to the generalized ~ symmetry algebra given
here'? (4) Super vv algebra for the super KP equation
has been given. How can one get the super extension of
the generalized w algebra? (5) What is the relation
between the integrability and truncated condition? (6)
Finally, for 3D Toda theory itself there are also many un-
solved problems, e.g. , giving out the full symmetry alge-
bra for the 3D Toda equation (3) is still a difficult task.
There may exist other types of symmetries for the 3D
Toda equation (3). For instance, the symmetry, tT=&„
which corresponds to the s-translation invariance is not
included in o.„(f) and ct„(f). We would like to discuss
these problems in future studies.
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