
VOLUME 71, NUMBER 24 PH YSICAL REVI EW LETTERS

Theory of Chiral Lipid Tubules

13 DECEMBER 1993

Jonathan V. Selinger and Joel M. Schnur
Center for Bio/Molecular Science and Engineering, 1Vaval Research Laboratory, Code 6900, 455 Overlook Avenue, SW,

Washington, D. C. 20375-5348
(Received 29 March 1993)

We present a continuum theory for the self-assembly of cylindrical tubules from chiral lipid bilayers in

any tilted Auid phase. This theory shows that tubule formation is driven by an intrinsic bending force
due to molecular chirality, and gives the radius in terms of the continuum parameters. The radius
diverges as an untilted phase is approached. The theory also predicts that the tilt direction is modulated
in a helical striped pattern on the tubule. This striped pattern is consistent with helical patterns observed
in electron rnicrographs of lipid tubules.

PACS numbers: 87.10.+e, 61.30.—v, 68. 15.+e, 87.22.Bt

The use of self-assembly to rationally control the fabri-
cation of microstructures oA'ers the potential for sig-
nificantly improved materials. In the past decade, experi-
ments have shown that lipid molecules self-assemble into
microstructures with a variety of morphologies. Cylindri-
cal microstructures [1-5], known as tubules, are particu-
larly interesting for both basic research and potential ap-
plications [6,7]. Tubules are composed of bilayers or
multilayers of chiral diacetylenic phosphocholine mole-
cules, wrapped in a cylinder with a typical diameter of
0.5 pm and typical length of 50-200 pm. They exhibit a
characteristic helical "barber-pole" pattern on the
cylinder, as shown in Fig. 1 [8]. Similar microstructures
are formed by bilayers of other chiral surfactants [9,10].
In this paper, we present a continuum theory for tubule
formation driven by an intrinsic bending force in a tilted
chiral bilayer [11,121. The theory predicts the tubule ra-
dius and tilt direction, and predicts a helical pattern of
stripes separated by sharp domain walls. The helical
stripes are an equilibrium pattern, not an artifact of the
tubule formation process. This theory explains the helical
patterns observed in electron micrographs of tubules, and
indicates how the structure of tubules can be controlled

by varying temperature and chirality.
There have been three general approaches to the theory

of tubule formation. First, de Gennes has argued that a
narrow strip of a tilted chiral bilayer will buckle to form
a cylinder because of its spontaneous electric polarization
[13]. de Gennes's original theory considers buckling
along the long axis of a cylinder, but a straightforward
modification of his theory describes helical winding due to

electrostatic attraction. Second, Lubensky and Prost
have derived a general phase diagram for nonchiral vesi-
cles, which predicts cylinders as well as other morpholo-
gies [14]. In the cylindrical phase, the cylinder radius
and length are determined by a competition betw'een edge
energy and curvature energy. Third, Helfrich and Prost
have argued that a tilted chiral bilayer will form a
cylinder because of an intrinsic bending force due to
chirality [11]. This theory has been extended by Ou-
Yang and Liu, who model tubules by analogy with
cholesteric liquid crystals [12], and by Nelson and
Powers, who calculate the efI'ects of thermal fluctuations
[15]. The chiral bending force in these theories could
arise from chiral molecules or from chiral symmetry
breaking in the bilayer [16].

Three types of experimental results distinguish among
these theories. First, experiments have shown that adding
electrolytes to the solvent does not aAect the formation or
radius of the resulting tubules [17], except for the partic-
ular case of charged head groups [18]. This result is

inconsistent with the electrostatic theories of tubule for-
mation, because the electrostatic attraction would be
screened by electrolytes in solution. Second, experiments
have found no correlation between the tubule radius r and
length L [2,3]. This result contradicts the modified de
Gennes theory, which predicts r ~ L ', and the Luben-
sky-Prost theory, which predicts r ~ L ', and supports
the other theories, which predict a fixed r independent of
L. Third, the observation of helical patterns in electron
micrographs of tubules implies that the tubule structure
is itself chiral. This result is inconsistent with the original

FIG. l. Transmission electron micrograph of a tubule with adsorbed Pd/Ni catalyst particles on the surface [8]. The helical
"barber-pole" pattern winding around the cylinder is consistent with the orientational domain walls predicted in this paper. In this

interpretation, the domain walls appear dark because the catalyst particles preferentially adsorb there.
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F,„„=d'x[-,' x-(1/r)'], (I)
which favors a flat bilayer. In this expression, v is the
bending rigidity. Second, there is the tilt free energy

F„(,= d x [ ——,
' ay + —,

'
by ], (2)

which favors a particular angle y=(b/a)' of the direc-

de Gennes theory and with the Lubensky-Prost theory,
which do not involve any chiral structure. Thus, only the
theory of an intrinsic bending force in a tilted chiral bi-

layer is consistent with all of these experiments.
In this paper, we investigate how molecular chirality

can induce both the formation of a cylinder and the for-
mation of a helical pattern on the cylinder. The theory of
an intrinsic chiral bending force is generalized in several
ways. In our model, we assume the molecules form a bi-

layer in any tilted fluid phase, which may have hexatic
bond-orientational order but does not have crystalline po-
sitional order. This assumption is supported by x-ray
scattering results from hydrated tubules [19], and by
theoretical calculations showing that a membrane that
can buckle in three dimensions (3D) cannot have equilib-
rium crystalline order [20]. We assume the bilayer forms
a cylinder of radius r and length L, as shown in Fig. 2.
This structure is described by the standard cylindrical
coordinates (p, O, z). At any point on the cylinder, the
molecular director n is tilted by an angle y with respect
to the local normal e~. The projection of n into the local
tangent plane makes an angle p with respect to eg. We
assume that y is uniform but p may vary as a function of
position, as is typically the case in flat liquid-crystal films.
This contrasts with Refs. [11] and [12], which assumed
that both y and p are uniform. We will investigate sys-
tematic modulations in p in the mean-field ground state,
and will not consider thermal fluctuations, which were
studied in Ref. [15].

The free energy of a tubule is the sum of three contri-
butions. First, there is the curvature free energy

n

ee

e,

FIG. 2. The cylindrical geometry discussed in the text. The
tubule has a radius r and length I. At any point on the surface,
the molecular director is tilted by an angle y with respect to the
local normal vector e~. The projection of the director into the
local tangent plane is oriented at an angle p with respect to el',
the unit vector along the equator of the cylinder.

+ —,
' lk, [nxvxn)'], (3)

which gives the free energy for elastic distortions in n.
Here, K~, K2, and K3 are the elastic constants for splay,
twist, and bend distortions, respectively. A factor of the
bilayer thickness has implicitly been absorbed into these
constants. For simplicity, we will make the approxima-
tion K

~

=K2 =K3 ——K. The parameter q represents the
chirality of the molecules. On a molecular basis, q can be
interpreted as the favored angle between the orientations
of neighboring chiral molecules, divided by the distance
between their centers of mass. On a continuum basis, q
gives the favored twist in the director field. In a non-
chiral system or a racemic mixture, inversion symmetry
requires q =0.

The total free energy F=F,„,„+Ft,~&+FF„,, „kcan be
written explicitly in cylindrical coordinates as

tor with respect to the local normal. Just below the tran-
sition to an untilted phase, a can be written as a
=a(T, —T), while b is approximately constant. Third,
there is the Frank free energy

r
FFrank g

d x[ 2 Ik ilV'nl + 2 lkzln Vxn —q~'
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tan2pp = —2qr, (5)
with 45' ~ pp ~ 90'. In the limit of low curvature,
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Note that the first six terms do not involve derivatives of
p, the next two terms are linear in derivatives of p, and
the final term is quadratic in derivatives of p.

We first consider the terms that do not involve deriva-
tives of p. Minimizing these terms over P gives

! qr)) 1, we obtain pp =45', i.e. , the average tilt is oriented
45' from the equator of the cylinder. This is the limit
studied in Refs. [11] and [12]. In the limit of extreme
curvature, qr «1, we obtain p =90; i.e. , the average tilt
is oriented along the long axis of the cylinder. Next,
minimization over y gives

ay+ (1+4q r ) '~ sin2y=byK (6)
2p
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This equation implicitly determines y. Note that cylin-
drical curvature increases y compared with a flat bilayer.
This trend is physically reasonable because an increase in

y makes the molecules more parallel to the long axis of
the cylinder, and thereby reduces the splay elastic energy.
Finally, minimization over r gives

r =—[ -' (& ' —I ) ' ' [2 + (2 ' —
1 ) ' ']] ' ',1 (7)

~here

2x+K+Kcos y

Ksin y

In these equations, the chirality parameter I/q sets the
scale of r, and this scale is multiplied by a dimensionless
factor involving y. In the limit of small tilt, r diverges as
1/y . Just below the transition to an untilted phase,
mean-field theory gives y cc (T, —T) ', and hence r
cc (T, —T) '. Although the exact exponent will be
modified by thermal fluctuations, we predict that the ra-
dius will diverge at the transition.

We now consider the terms in the free energy (4) that
are linear in derivatives of p. For small variations in p,
these terms can be written as

F)jnegp d x kg ' Vp (9)

Here, the coeIItcient is X =Ksinycosy(r +q ) ', and g
is a unit vector in the local tangent plane,

g =cos(po —6') eg+ sin(Po —6)e, , (10)

where tan8=1/qr. Note that F~;„,„favors a va. riation of
p in the g direction. Indeed, F~;„„,„

is similar to the free
energy of a chiral smectic film, which was studied
theoretically in Refs. [21] and [22]. As in those theories,
F~;„„.„can lead to a striped pattern on a tubule, with

stripes perpendicular to g. Within each stripe, there is a
gradual variation of p, which makes F~;„„„negtivaeAt
the edge of each stripe, there is a sharp domain wall,
where p rapidly jumps back to its initial value so that the
pattern can repeat periodically. The nature of the
domain wall depends on the detailed structure of the bi-

layer phase. I n the simplest case of a ffuid bilayer
without hexatic order, the domain wall is a narrow region
where y differs from its bulk value [22]. The wall energy
per length is then approximately E„,,~~= (a /b)(K/a) '

The striped pattern will occur if X & E„,, ~~. The length
scale of the modulation is then limited by the terms in

Eq. (4) that are quadratic in derivatives of p. The result-

ing stripe width is approximately (@sin y)/(k —E„,u).
If the bilayer has hexatic order, then the domain-wall
structure and energy change, but this argument still ap-
plies. (This argument does not apply to crystalline bi-

layers, but crystalline order seems to be ruled out by the
experimental and theoretical arguments noted earlier. )

In Fig. 3, we illustrate the striped pattern in two limit-
ing cases. Figure 3(a) shows the limit of low curvature,
qr )) 1. The average tilt direction is 45 from the equator

of the cylinder, and the stripes are perpendicular to the
average tilt direction. In 2D, the director modulation
across the stripes appears to be bend, but in 3D it is actu-
ally a combination of bend and twist, and indeed is driven

by the favored twist due to molecular chirality. Figure
3(b) shows the limit of extreme curvature, qr (( I. In this
limit, the average tilt direction is along the long axis of
the cylinder, and the stripes are parallel to the average
tilt direction. The director modulation across the stripes
is splay, which is driven by the curvature of the cylinder
rather than by the chirality of the molecules. In 3D, the
splay of the molecular director is concentrated into the
domain walls rather than distributed uniformly over the
cylinder. Any real system will be between these two lim-

its.
As a comparison between these theoretical results and

experiments, note that the striped pattern predicted here
is consistent with the helical barber-pole pattern observed
in electron micrographs of lipid tubules. As an example,
Fig. 1 shows a tubule that was formed in ethanol and
then placed into a dilute solution of Pd/Ni colloidal parti-
cles [8]. The helical pattern of dark lines in this micro-

graph corresponds to the orientational domain walls pre-
dicted by our theory. In this interpretation, the domain
walls contrast with the rest of the tubules because the col-
loidal particles preferentially adsorb at the domain walls.
Analogous accumulation of impurities at orientationa1
domain walls has been observed directly in Langmuir
monolayers [23]. Similar helical patterns are observed in

cylindrical microstructures of other chiral surfactants
[9,10]. In most electron micrographs, as in Fig. 1, the
domain walls are oriented approximately 45 from the
equator of the cylinder, which implies that the experi-
mental tubules are close to the limit of low curvature.
This result suggests that v is large or y is small.

Our theory could be tested further in two ways. First,
one could minotor the helical pattern in a sample of tu-

bules to see whether it anneals away in time. We predict
that the pattern will be stable, because it is an equilibri-
um pattern rather than an artifact of the tubule forma-
tion process. Second, one could look for a periodic modu-

lation of the tilt direction between the helical domain
walls. This modulation might be observed using fluores-
cence microscopy with polarized laser excitation, as in

Ref. [23].
Many experiments observe wound ribbons as well as

closed cylinders, or even wound ribbons attached to

(a) (b)

FIG. 3. Schematic views of the striped patterns in the tilt
direction in two limiting cases: (a) The limit of low curvature,
qr» l. (h) The limit of extreme curvature, qr((1.
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closed cylinders [3]. In our theory, the orientational
domain walls are natural weak lines where the cylinder
can easily break, thereby forming a wound ribbon. Con-
versely, they are also the lines where a wound ribbon can
fuse to form a cylinder. We thus expect a wound ribbon
to resemble a single stripe of the pattern discussed here.
In particular, we predict a modulation in the tilt direction
across the width of a wound ribbon. The competition be-
tween a closed cylinder and a wound ribbon depends on
the relative free energies of a domain wall in a closed
cylinder and an edge of a wound ribbon.

In conclusion, we have developed a theory for cylindri-
cal tubules of chiral lipid bilayers. We derive the radius
and the average tilt direction in terms of the chirality pa-
rameter q, and in terms of the temperature near the tran-
sition to an untilted phase. Furthermore, we predict an
equilibrium striped pattern on the cylinders, with stripes
in the tilt direction separated by sharp domain walls. In
future work, this theory could be extended in several
ways. First, one could investigate modulations in the
magnitude of the tilt and in the curvature of a tubule. A
recent theory of rippled phases of lipid bilayers [24] sug-
gests that the tilt modulation discussed here will neces-
sarily lead to ripples in the curvature. Second, one could
go beyond mean-field theory to investigate the eAects of
thermal Auctuations, using either the renormalization
group or Monte Carlo simulations. Third, one could ex-
amine other morphologies of chiral lipid bilayers, such as
wound ribbons, spherical vesicles, and tori. This study
would give a morphology phase diagram for chiral bi-
layers analogous to the phase diagram of Ref. [14] for
nonchiral bilayers. Finally, one could use molecular mod-
eling to estimate q from the packing of chiral lipid mole-
cules. Thus, models of chiral packing could relate the tu-
bule diameter to the molecular structure. This work
would extend the understanding of the general connection
between chirality and pattern formation in organic mi-
crostructures.
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