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A simple dynamical model for Darwinian evolution on its slowest time scale is analyzed. Its mean
field theory is formulated and solved. A random neighbor version of the model is simulated, as is a
one-dimensional version. In one dimension, the dynamics can be described in terms of a “repetitious
random walker” and anomalous diffusion with exponent 0.4. In all cases the model self-organizes to

a robust critical attractor.

PACS numbers: 87.10.4e, 05.40.+j

Introduction.—Life on Earth is presumably the most
complex dynamical system known; too complex for quan-
titative modeling, it seems. The usual strategy in that
situation is to focus either on a manageable subsystem or
special case or on just a few aspects deemed most impor-
tant for the entire system. The first approach was taken
in the outstanding work by Eigen and co-workers on pre-
biotic evolution [1]. We choose the latter approach here,
analyzing a quantitative model for Darwinian evolution
in general, with an eye on qualitative features of actual
evolution. The model describes an ecosystem of interact-
ing species which evolve by mutation and natural selec-
tion [2]. Species spend most of the time at punctuated
equilibria [3,4]. Casually connected escapes of species
from these equilibria form avalanches of evolutionary ac-
tivity with a power-law distribution of sizes. A mean field
theory yields an exponent 7 = % for this size distribution.
The mean field description of the self-organized state is
compared with a random neighbor version of the model
and with a one-dimensional version. In one dimension,
the dynamics can be described in terms of anomalous
diffusion with exponent 0.4.

Simple as it is, the model has an ancestry: we have
drawn on our earlier work on models of evolution inspired
by Kauffman’s work [5-7], on self-organized criticality [8],
and on nonequilibrium growth of surfaces [9]. Also, we
are not the first to play with toy models of evolution; see,
for example, the last section of [10,11], and for a review
(12].

The model.—We consider a dynamical ecosystem of in-
teracting species which evolve by mutation and natural
selection. For simplicity, we assume that no species di-
vide into several species and no species become extinct.
Thus the only effect of evolution is adaptation to the
environment. The environment of each species may be
thought of as a fitness landscape with many local max-
ima, supplemented with some dependence on the states
of some other species. We assume that evolution to lo-
cal fitness maxima takes place much faster than escapes
from such maxima. This is a reasonble assumption, since

the first process is guided by a gradient, while the latter
is exponentially suppressed and only occurs because of
variance between individuals in a species. Viewed on its
slowest time scale, then, evolution is discrete: species sit
at local fitness maxima, and occationally a species jumps
to another maximum. In the latter process, a species
may change the fitness landscapes of other species which
depend on it, to the extent that some of them no longer
find themselves at local maxima. Consequently, they im-
mediately jump to new maxima. This may affect yet
other species in a chain reaction, a burst of evolution-
ary activity. We assume this chain reaction is subcritical
and on the average involves a total of K species (see [6]
for a realization of this situation), all in a time that is
negligible on the slowest time scale.

We characterize the state of an ecosystem of N species
by N values (z;), ¢ = 1,2,..., N. These values charac-
terize the effective barriers towards further evolution ex-
perienced by the species at their local maxima of fitness.
Since the waiting time for further evolution increases ex-
ponentially with the barrier height, the dynamics consists
in selecting the species with the lowest barrier value, and
replacing that value, and that of K —1 other species, with
new values. For simplicity, we assume that the new bar-
rier values are random, all drawn from the same uniform
distribution in the interval [0,1]. Results do not depend
on this choice of distribution, as simple reparametriza-
tions relate all choices. Results do depend on the way the
K species are chosen. One choice consists in placing the
species on the sites of a d-dimensional hypercubical lat-
tice with nearest neighbor interactions. Thus K = 2d+1.
We shall return to the case of d = 1 below.

Random neighbor and mean field model—Here, for
mathematical convenience, we select the K —1 interacting
species at random among the N species in the ecology.
This random neighbor model is a first step towards a solv-
able mean field theory. We also assume this randomness
to be “annealed;” i.e., the next time the same species
triggers K — 1 other species to evolve, they are chosen at
random anew. A mean field theory can be constructed by
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neglecting correlations between barrier values. Then the
ith smallest barrier value, denoted by z;, is distributed
as the ith smallest number out of N drawn from the dis-
tribution p(z, t) of all barrier values in the ecology. If we
let p; denote the distribution for z; then our mean field
approrimation is the assumption that

w(e) = =t @@ @, O
where we have introduced
P@%=A3mwwﬁ, (2)
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Normalization of p gives
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We can easily write down the evolution equation for

p(z, 1),
p(z,t+1) =

=P(z)+Q(z)=1, V. (4)

p(,1) ~ %1 (2,0)
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where Eq. (1) gives the distribution for the smallest bar-
rier,

pi(z) = Np(z)Q" (), (6)

whose removal from the set of N barrier values is repre-
sented by the second term on the right-hand side of Eq.
(5). The third term on the right-hand side of Eq. (5) rep-
resents the removal of K — 1 of the N — 1 barrier values
remaining after the smallest has been removed from the
set of N values. These K — 1 values can be any of the
N — 1 values remaining, hence are distributed as these,
i.e., as [Np(z,t) —pi(z,t)]/(IN —1). The last term on the
right-hand side of Eq. (5) represents the addition of K
new equidistributed barrier values, replacing the K val-
ues that were removed with the preceding terms. Notice
that probability is conserved by Eq. (5).

Our mean field dynamics is an approximation to the
master equation for the Markov process of the random
neighbor model, both having one unique attractive fixed
point. At this fixed point Eq. (5) is an integral equation
fo p(x), or, equivalently, an ordinary differential equation
for Q(z). It is solved by the positive root Q(z) of the
polynomial equation

(N — K)Q"(x) + N(K —1)Q(z)
+ (N -1)K(z—-1)=0. (7
In the limit where N > K > 1, the first term in this
equation is small relatively to the second term for such

values of =z where Q(z) is less than 1 by more than
O(1/N). Consequently we have
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(1—z) forz—1/K > O(1/N). (8)

Conversely, where Q(z) ~ 1 we have
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~(1—-Kz)N for1/K —z>> O(1/N). (9)

Using p(z) = —dde(x), we have
p(x):% for 1/K —z > O(1/N), (10)
p(z) ~ Klil forx —1/K > O(1/N). (11)

The exact solution of Eq. (7) is easily obtained numer-
ically by iteration of Egs. (8) and (9) for z > 1/K and
z < 1/K, respectively. It is shown in Fig. 1(a) together
with the resulting distribution of the smallest barrier,
p1(z), both as dashed lines. The random neighbor model
is easily simulated and its equilibrium distributions p(x)
and p; () are shown in Fig. 1(a) as full lines.

In the limit N — oo we see that p(z) has a disconti-
nuity at £ = 1/K; it vanishes below this threshold and
is constant above it. It is easy to understand this re-
sult in approximate terms: Suppose p(z) ~ K/N for
0<z<1/K and p(z) ~ K/(K —1) for 0 < 1/K < z.
Then the smallest of N barrier values distributed accord-
ing to p will be equidistributed below the threshold value
1/K, and the other N — 1 will be larger than 1/K, typi-
cally. Thus, when the smallest barrier value is removed,
none is left below threshold. Consequently, the K —1 ad-
ditional barrier values which are randomly selected and
removed must be taken from above the threshold; hence
they are equidistributed by assumption about p. When
we replace these K barrier values with K equidistributed
values, one of these typically falls below the threshold
and the other K — 1 above. Since all of them are equi-
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FIG. 1. (a) Equilibrium distribution of barrier values p(z)
and distribution of smallest barrier value p;(z) for simulated
random neighbor model (full curves) and corresponding mean
field theory (dashed curves). (b) Same distribution for 1D
model (full curves) and mean field theory removing two lowest
barrier values (dashed curves). All cases have K = 3 and
N = 100.



VOLUME 71, NUMBER 24

PHYSICAL REVIEW LETTERS

13 DECEMBER 1993

distributed, p is left unchanged, as it should be.

This explanation points to another aspect of the
asymptotic dynamics: If we trace in time which species
trigger the bursts of evolutionary activity, then it is usu-
ally one of the species participating in recent activity. So
at any given late time, the very species which acquired
their current properties most recently are also the ones
most apt to change them again. Thus, according to our
model, the cockroach, which is much older than the hu-
man race, will resemble itself long after humans, as we
know them, have disappeared.

Awvalanches.—In order to express the causal connec-
tions between bursts of evolutionary activity, we define
an avalanche as a causally connected sequence of activ-
ity associated with barrier values below the self-organized
threshold 1/K. Suppose that at some time all barrier val-
ues are above the threshold value. Then the next burst
will, on the average, result in one barrier value below
threshold, which for its part will result in another barrier
value below threshold, etc. Thus the number of barriers
below threshold remains constant equal to one, on the
average. The actual number of barriers below threshold
fluctuates and may become zero again, terminating the
avalanche.

A more realistic value for the average number of barrier
values below threshold can be obtained from our mean
field approximation. It gives

NP(1/K)=InN —InlnN — In(K — 1)
+O(lnln N/In N)
+0(1/InN) + O(In N/N) , (12)
where P(1/K) = 1 — Q(1/K), and Q(1/K) is the so-
lution to Eq. (7) with z = 1/K. With an average of
NP(1/K) barrier values below threshold, the fluctua-
tion in this number needed to terminate an avalanche
becomes increasingly rare with increasing N. Thus the
sizes of avalanches, defined as the number of bursts they
contain, grow with N, to diverge as N — oo.

In the limit N — oo, an avalanche defined as above
can be identified with critical branching processes with
branching ratio K [13]. This is done by identifying each
burst with a node, and each of K new barrier values
resulting from a burst with either a branch rooted in
that node (if the barrier value is less than the threshold
value), or with a leaf rooted in the same node (if the
barrier value is above threshold). The limit N — oo is
necessary to obtain the tree structure. This identification
tells us that avalanches come in all sizes s, and the larger
ones are distributed according to a power law with mean
field exponent

D(s) x s73/2, (13)
showing that there is no average size to avalanches. The
avalanches are critical, because the branching process
is. Since the medium through which these avalanches
propagate—the set of N barrier values—is transformed
by the avalanches and driven by them to the unique
asymptotic fixed point distribution that makes the

avalanches critical, our model for biological evolution is
a self-organized critical dynamical system.

One-dimensional model—So far, we have seen criti-
cality only in the mean field approximation. Now let us
study a finite dimensional case. We have simulated the
dynamics of the one-dimensional ecology and measured
a number of its properties in the equilibrium state. Fig-
ure 1(b) shows the distribution of barriers, p(z), and the
distribution for the lowest barrier value, p;(z), as full
curves. Both are for K = 3, N = 100. They do not
resemble the random neighbor and mean field results for
K =3, N =100, shown in Fig. 1(a). The dashed lines in
Fig. 1(b) show results from a different mean field model,
obtained also with X = 3 and N = 100, but by replac-
ing the two smallest barrier values plus one randomly
selected value with random numbers in each time step.
It is easy to understand why this latter algorithm gives
results much closer to the 1D results: Low barrier val-
ues are clustered in one dimension, so the replacement of
the smallest barrier value together with the values on its
nearest neighbor sites amounts to replacing the lowest
value plus 0-2 other low values. Actually, some of the
difference between the mean field and 1D results shown
in Fig. 1(b) is due to finite-N effects being more pro-
nounced in the 1D results, for example, the value of p(z)
for z > 0.7. It will approach 3 as N — oo, while the
mean field value for p(x) is already very close to 3 for
z > 0.7.

Figure 2 shows a space-time map of those sites on
which species change barrier values in the time inter-
val covered. Whenever the lowest barrier value is found
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FIG. 2. Space-time map of an avalanche in the
self-organized critical state. At any time the site with min-
imum barrier value is shown as a large dot. Sites with bar-
rier values below the threshold value 0.67 are shown with a
small dot. The activity is seen to always return to sites below
threshold.
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among those K = 3 last renewed, the site of lowest bar-
rier value performs a random walk, because those three
sites have equal probability for being the one with small-
est barrier value. The figure shows that this is what
happens most frequently. When the site of lowest barrier
value moves by more than one lattice spacing (jumps), it
most frequently backtracks by two lattice spacings to a
site that was updated in the next-to-last time step. But
longer jumps occur, too; actually jumps of any length
occur, as indeed they must in order to be consistent with
results below. These jumps always take the walker back
to a site that was updated recently, the longer jumps typ-
ically to a less recently updated site. In popular terms,
the site of lowest barrier value is a “jumpy random walker
with a repetitious compulsion.”

Figure 3 shows three aspects of this repetitious ran-
dom walk which differ from a truly random walk: The
root mean square of the distance traveled vs time and
the number of different lattice sites visited as a function
of time both grow with exponent 0.40, in contrast to the
exponent % obtained for the random walker. The max-
imum number of updates of any state as a function of
time appears to grow as t%®. This exponent may have a
simple explanation in terms of the others: the total num-
ber of updates is proportional to time, and the number
of different sites visited to t>4. So the number of visits to
a given site (in particular to the one most often visited)
should grow with exponent 1—0.4 = 0.6. For the random
walker this relationship reads 1 — % = % for the number
of visits to any site, for instance, the origin of the walk.

The biological implication of this correlated spread-
ing of evolutionary activity is that species that evolved
recently are also most likely to change again; compare
humans vs cockroaches above. The actual values of the
exponents, here 0.4 and 0.6, depend on the dimension,
here chosen to be equal to one. If our model has an up-
per critical dimension above which mean field theory is
exact, and this dimension is a small integer, the mean
field version of our model is probably the most relevant
one to use in an analysis of historical biological data.

One might of course attempt a less “coarse-grained”
description of evolution than the one we have introduced
and studied here—one involving fitness landscapes, and
interactions between species evolving in those landscapes.
For example, each species can be described simply by a
genetic configuration, as in [5,6], with a noise term added
to the dynamics in order to allow escapes from local fit-
ness maxima. Or each species can be represented by
a population of individuals that reproduce sexually to
explore the fitness landscape, and have their variability
maintained by mutations, for example as described in
[14]. This suggests an obvious way to include extinc-
tion and bifurcation of species. Apart from those very
interesting phenomena, we believe that our extreme sim-
plification and coarse-graining grasps the essence of what
matters even for finer-grained models.
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FIG. 3. Large dots: Root mean square displacement of the
activity as a function of time, starting at an arbitrary time
in the critical state. This quantity grows as t>*. Solid line:
Number of different lattice sites visited as a function of time,
starting at an arbitrary time in the critical state. It also
grows as t%4°, Dotted line: Maximum number of updates of
any site as a function of time, starting at an arbitrary time
in the critical state. It seems to grow as t%-°.
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