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It is shown that the freedom in the choice of the proposal matrix in the generalized Metropolis method
can be used to greatly enhance the eSciency of the method. For example, the difticulties associated with
the existence of multiple length scales in electronic structure calculations can be avoided by making an
intelligent choice. Results are presented for Ne, Ar, and Li2.

PACS numbers: 71.10.+x, 31.15.+q

Introduction In .m—any branches of physics, simula-
tions of systems with multiple length scales are very time
consuming. Accelerated methods, that involve making
collective moves of the degrees of freedom, have been
developed for lattice problems [1-3]. Here we present an
accelerated method generally applicable to continuum
problems and demonstrate its efficiency by applying it to
calculations of the electronic energy of atoms and mole-
cules. In this case, much of the interesting physics or
chemistry is related to the valence electrons but the size
of the Monte Carlo (MC) moves is restricted by the
much shorter length scale of the Is core electrons [4]. It
is shown that an accelerated Metropolis algorithm,
wherein each electron attempts moves that are propor-
tional to its distance from the nearest nucleus, enhances
greatly the rate at which the system evolves.

The generalized Metropolis algorithm. —The impor-
tance of the Metropolis method [5] in computational sci-
ence is due to the fact that it is a simple and powerful
method for sampling any known distribution f(R), where
R labels the degrees of freedom of the system, which may
be continuous or discrete. We review here a generaliza-
tion [6,7] of the Metropolis algorithm which yields an
infinite family of algorithms depending on the choice of
the proposal matrix T(Rf~R;). We show that the effi-

ciency of the method can be enhanced greatly by a suit-
able choice of T(Rf ( R;).

Let T(Rf~R;) =S(Rf~R;)/I(R;), where I(R;) =fdRf
XS(Rf~Rt), be the probability for an attempted move
from R; to Rf and let A(Rf~R;) be the probability for
the move to be accepted. Assuming ergodicity, the equi-
librium distribution is f(R), provided that the ratio of ac-
ceptance probabilities is chosen to satisfy detailed balance

A(Rf ~R;) f(Rf)
A (R'~Rf ) f(R;)

f(Rf)
f(R;)

T(R, (Rf)
T(Rf [R, )

S(R, (Rf) I(R, )
S(Rf~R;) 1(Rf)

Note here that we have complete freedom [7] in the
choice of the attempt probabilities T. For a given choice
of T, the optimal choice for the acceptance probabilities,
is given by

f(Rf) T(R;(Rf)
f(R, ) T(Rf(R, ) ' (2)

For this choice, A(Rf)R;) is largest and therefore the
system evolves the fastest. Many applications of the
Metropolis method (and this is the form in which it was
originally formulated [5]),make the simple but inefficient
choice that T is symmetric, in which case the factors of T
in Eq. (2) cancel.

The drawback of the Metropolis method is that the
points sampled are sequentially correlated, resulting in a
loss of computational efFiciency. If it takes, on the aver-
age, T„„MCmoves for an observable to be decorrelated,
then the effective number of independent observations in

a MC run of length N is only W/T„„. It is clearly ad-
vantageous to reduce the autocorrelation time T„,„. This
can be done by either increasing the average size of the
proposed moves or by increasing the acceptance of the
moves. In order to prevent the acceptance from getting
too small, it is common practice to restrict the moves to
be in the neighborhood of R; by choosing S(Rf~R;) to be
nonzero only within a domain D(R;) of volume A(R;)
around R;. For a given functional form of S(Rf~R;) the
acceptance decreases as O(R;) (and therefore the aver-
age size of the proposed moves) increases, so, there exists
an optimal 0 (R;) for which the system evolves the
fastest.

In this Letter we propose a S(R ~Rt) with both large
moves and large acceptance. S(Rf R;) should be viewed
as being a function of Rf which depends parametrically
on R;. Our task is to find a functional form for
S(Rf~R;) such that fdRfS(Rf~R;) is known, T(Rf~R;)
can be sampled directly, the resulting proposed moves are
large and the acceptance in Eq. (2) is large on average.
It was observed in Ref. [7] that if I(R;) is independent of
R; then the choice S(Rf ~ R; ) —f(Rf ) results in

A(Rf ~R;)/A(R;~Rf) = 1. However, the only way to
have I(R;) be independent of R; and S(Rf~R;) —f(Rf)
is to have S(Rf~Rt) be independent of R;. However, for
most f(R) of interest, it is not possible to find a function
that approximates it sufficiently well over the entire
domain of F(R) and which can be sampled directly.
Hence, as mentioned before, S(Rf~R;) is chosen to be
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S(RflR;) =g;(Rf)/ JQ(Rf) (4)

yields A(RflR;)/A(R;lRf) = 1, if g;(Rf) —Qf(Rf)
within D(R;) [8]. To be more precise, it can be shown

[9] by Taylor expansion that if the logarithmic deriva-

tives of g;(Rf) at R; equal those of Jf(Rf) then the
average acceptance goes as 1+8(h ), where A is the
linear dimension of D(R;). In general, m =2, but if
D(R;) is inversion symmetric with R; at its center, then
m =3. This is a considerable improvement compared to
using a symmetric S(Rf l R; ) or choosing S(Rf l R; )
-f(Rf) for either of which the average acceptance goes
as I +6(a).

In the case of electronic structure calculations the
probability distribution f(R) is l%'(R)l, where +(R) is

a trial wave function and R specifies the 3n electron coor-
dinates. Hence Eq. (4) becomes

S(RflR;) = l@;(Rf)l/ Jt1(Rf), (5)

where @;(Rf)-@(Rf) in D(R;) and has logarithmic
derivatives at R; that match those of +(Rf). We now

discuss the explicit forms of S(Rf l R; ) for which we

present results here. For the first two choices Q(R;) is

constant, independent of R;.
Simple metropolis The simpl. e—st form is S(RflR;)

equal to a constant when Rf is within a 3n-dimensional

hypercube (box) of linear dimension 2d, centered at R;
and zero elsewhere. Then T(RflR;) =(2A) " within

the box and zero elsewhere. Aside from the question of
whether one or all particles are moved in a single MC up-

date, this is the original Metropolis method [5] and it is

the form in which it has most frequency been used.
Cartesian coordinate directed Metropolis According. —

to Eq. (5), an improved form of S is S(Rf l R;)
=

l +;(Rf ) l within the box. The simplest choice of
@;(Rf) is a linear approximation (in each of the 3n

Cartesian coordinate directions) to e(Rf) at R;.
Two features of the wave function restrict the size of

the attempted moves. First, probable electron configura-
tions have two core electrons at a distance of 6(1/Z)
Bohr radii from each nucleus, whereas valence electrons
are typically a distance 6(l) from the nearest nucleus

[10]. Hence, if the same value of 6 is used for all the
electrons, as is usually the case, then the core electrons
set the length scale for all the electrons, else a large frac-
tion of the proposed moves are rejected. Second, %'(R)

nonzero only in some domain D(R;) of volume Q(R;)
around R;, so that the proposed moves are within this
domain. In that case I(R;) =S(R;lR;)A(R;) and Eq.
(I) becomes

A (Rf l Rt ) f(Rf) S(R; l Rf ) S(Rt l R; ) 0 (R;)
A (Ri I Rf ) f(Rt ) S(Rf I Rt ) S(Rf I Rf ) n (Rf ) '

(3)
from which it is apparent that the choice

has a derivative discontinuity when an electron is at a nu-
cleus, which renders any Taylor series approximation, in
Cartesian coordinates, of 4'(R), very inaccurate. (There
is also a derivative discontinuity when two electrons over-
lap, but this is less problematic since electrons repel each
other. ) A natural solution to both these problems is pro-
vided by the use of spherical polar rather than Cartesian
coordinates in proposing the Monte Carlo moves.

Spherical polar coordinate directed Metropolis W.—e
now describe a choice for S(RflR;) which allows each
electron to make a move appropriate to its length scale
and which avoids the derivative discontinuity in +(R).
Each electron moves in a volume which is the intersection
of a cone which subtends an angle 29M at the closest nu-
cleus and a concentric spherical annulus. Let rk; be the
initial distance of the kth electron from the nucleus
closest to it. The proposed move will use spherical polar
coordinates centered at that nucleus. The radial moves
are made in the interval (rk;/h„, rk;A„). Hence the size
of the radial moves is proportional to rk;. For atoms, this
ensures that if a move is possible, then the reverse move is
also possible. We will discuss the necessary changes for
molecules and solids later. The advantages of moving in

this volume are that the size of the valence electron
moves is not restricted by the core electrons and that
Taylor expansions of the wave function are valid in the
region of interest since +(R) does not have derivative
discontinuities in spherical polar coordinates at nuclei.

Since

0 (Rf) + (2n/3)(1 —cos8~) (g —I/5„)ref,
k 1

according to Eq. (5), S(Rf l R; ) =
l @;(Rf) l/+k -

& rk g. In
order to simplify the sampling, N;(Rf) is chosen to have
the form

@'(Rf) H Wi(gk f 18k,f "k,f)V (Ok f Irk,f)U (rk,f)
k

For each electron k, the radial coordinate rk f is sampled

from l U; (rk ) l Jrk f, then Ok f is sampled from
lV;(Ok f irk f) sinOkf conditional upon rkf and finally

pk f is sampled from l W; (pk flOk f, rk f) l conditional on

rk f and Ok f. The precise choice of the functions
W;, V;, U; is described elsewhere [9].

It is possible to make further improvements by making
0~ a function rk f and rk;. The reason it is advantageous
to do so is that most trial functions have a finite discon-
tinuity of magnitude Z in the local energy when two elec-
trons approach a nucleus [11], Z being the nuclear
charge. In this limit the local energy is Z hartrees higher
when the two electrons and the nucleus lie along a
straight line with the electrons on opposite sides of the
nucleus than with the electrons on the same side. It is
desirable to average over this discontinuity as rapidly as
possible by making large angular moves when r,„«1/Z,
where r,„=(rk;+rk f)/2 Hence cosO~ .is chosen to be
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1+cosO
cosO~ =cosOm

1+ Zr, „
where 0 is fixed, which has the limiting behaviors
8bt =8~ when r,„&&1/Z and 8' =tr when r,„&&1/Z. In
spite of the fact that when an electron is close to a nu-

cleus, the angular move is made over the entire surface of
a sphere, the acceptance of these moves is close to one
[9]. On the other hand when moves are made in Carte-
sian coordinates, the acceptance for the electrons close to
the nucleus is very low [9].

Finally we note that although each of the above algo-
rithms assumes that all the electrons are moved during
each Monte Carlo update, it is trivial to modify the algo-
rithms to move only one electron at each MC step or in

fact any number in between.
Generalization to molecules and solids. —The addi-

tional complication for molecules and solids is that the
closest nuclei to each of the n electrons at R; need not be
the closest nuclei to the corresponding electrons at Rf.
For some fraction of these the reverse move from Rf to
R; is not possible, i.e., S(R; iRf) =0, because whereas Rf
lies in D(R;), R; may not lie in D(Rf). In that case de-

tailed balance demands that the move from R; to Rf be
rejected, i.e., A(RfiR;) =0. Since these rejections may
be performed on purely geometrical grounds (they do not
require calculating the wave function or its derivatives at
Rf), this does not result in an appreciable loss of
eiciency.

Results. —The eSciency of the algorithms is inversely

proportional to the autocorrelation time of observables of
interest. Table I shows the autocorrelation time of the
energy for four algorithms and four wave functions. The
four algorithms are (1) the simple Metropolis algorithm

moving all electrons at each MC step, (2) the Cartesian
coordinate directed Metropolis algorithm moving all elec-
trons at each MC step, (3) the Cartesian coordinate
directed Metropolis algorithm moving only one electron
at each MC step, and (4) the spherical-polar coordinate
directed Metropolis algorithm moving only one electron
at each MC step. The four wave functions used are (1) a
simple Ne wave function, (2) a good Ne wave function,
(3) a simple Ar wave function, and (4) a simple Liq wave
function. The simple wave functions consist of a deter-
minant multiplied by a simple Jastrow function which is a
function of the interelectron distances only, whereas the
good wave function consists of a determinant multiplied
by a more complicated 3astrow function which is a func-
tion of both the interelectron distances and the electron-
nuclear distances [12].

The measure of efficiency of the algorithm is the auto-
correlation time which is determined as follows. The en-
tire MC run (after discarding the equilibration updates)
consists of N MC updates that are divided into Nb blocks
each consisting of N, MC steps for each of the n elec-
trons. The local energy is measured after each MC
update. The autocor relation time is given by T„,„
=N, (ob/a), where cr and ob are the rms fluctuations of
the individual energies and the block average energies, re-

spectively. N, must be chosen such that N, ))T„„,. The
autocorrelation times presented in Table I were obtained
using values of N, that were at least 100 times greater
than T„,„. It was found that using N, = 10 Tgp resulted
in estimates of T„,„ that were too low by as much as
20%. When MC moves consist of moving one electron at
a time it takes twice the computer time to move all the
electrons as compared to when they are all moved at once
[7]. Hence Table I has values of T,*„„=2T„,„ for algo-

TABLE I. Autocorrelation times for the four wave functions and the four algorithms dis-
cussed in the text. In order to have a fair comparison, T*„=T „for algorithms 1 and 2 and
T „=2T~„,for algorithms 3 and 4. In algorithm 4, 8~ =z/2 for Ne and Ar and 8 =sr for Li2.
8 is the average acceptance. The uncertainty in T „is typically 10% of its value.

%ave function

Ne simple
E = —128.716 hartree

E~r, 43%
o. 1.8 hartree

Ne good
E —128.901 hartree

Egprg 9 1%
o. 0.91 hartree

Ar simple
E —527. 1 hartree

Egyre 37%
a 4.0 hartree

Li2 simple
E —14.9476 hartree

Egprg 6 1%
o 0.41 hartree

Algorithm

0.25
0.3
0.8

0.25
0.3
0.8

0.12
0.2
0.5

0.75
1

2

0.288
0.661
0.769
0.708
0.290
0.663
0.771
0.708
0.307
0.474
0.813
0.620
0.268
0.614
0.616
0.775

Tcorf

84
28
13
2.0

37
11
7.2
1.7

190
44
13
2.2

210
56
32
5.8

410



VOLUME 71, NUMBER 3 PHYSICAL REVI EW LETTERS 19 JULY 1993

rithms 3 and 4. We note that cr and the variational ener-

gy F. depend on the trial wave function but not on the al-
gorithm used. T 0 and the acceptance 8 depend on both
the algorithm and the trial wave function.

For each of the algorithms the values of h, or h, , and 0
were optimized to yield the smallest possible T«„. Table
I shows the values of T„„for approximately optimal
values of the parameters. Moderate variations of the pa-
rameters about their optimal values aA'ects the efficiency
of the algorithm only slightly. For example, changing the
value of 6„ from 5 to 4 altered the value of T„„by less
than 10% for each of the wave functions. For the four
wave functions, the autocorrelation times get smaller by
factors of 42, 22, 86, and 36, respectively, as we progress
from algorithm 1 to 4 and by factors of 6.5, 4.2, 5.9, and
5.5 in going from algorithm 3 to 4.

Note that for each of the four algorithms T«„ is small-
er for the good Ne wave function than for the simple Ne
wave function. The reason for this is that the good Ne
wave function has a more rapidly varying local energy
(but with a smaller amplitude of course) and consequent-
ly it takes fewer Monte Carlo steps to wander from a re-
gion where the local energy is too high to one where it is
too low and vice versa. Hence the gain in eII]ciency from
improving the wave function is greater than would be
supposed by merely comparing their respective values of
0'.

The variational energy for the good Ne wave function
is —128.9005 ~0.0005 hartree, corresponding to 91% of
the correlation energy. This is the lowest energy calculat-
ed to date by variational Monte Carlo for Ne. The fact
that the energy is good is due to the high quality of the
wave function, but the fact that the energy could be
determined with a small statistical error, in just a few
hours on a workstation, is testimony to the eIIiciency of
the new algorithm.

Comparison of the results for algorithms 2 and 3
shows, as has been noted before [7], that for systems with
many electrons, and for this class of algorithms, it is more
efficient to move one electron at a time rather than all at
once.

For algorithm I there is a considerable increase in T„„
in going from Ne to Ar. On the other hand for algorithm
4, T„„increases very little. This does not mean that cal-
culations of heavy atoms can be performed as rapidly as
those of light atoms. The time for evaluating deter-
minants in the wave functions scales as Z and the fluc-
tuation in the local energy o is empirically found to scale

roughly as Z or Z' . Consequently the computer time
required to obtain results with a fixed statistical uncer-
tainty increases as Z or Z if T«« is independent of Z
and yet more rapidly otherwise.

In conclusion it was shown that an efficient choice of
the proposal matrix in the generalized Metropolis method

is S(Rf~R~) —Qf(Rf)/Q(RI). Large gains in eSciency
were demonstrated in calculations of the electronic ener-

gy of atoms and molecules.
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