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Exact Calculation of the Ground-State Dynamical Spin Correlation Function
of a S = 1/2 Antiferromagnetic Heisenberg Chain with Free Spinons
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We calculate the exact dynamical magnetic structure factor S(Q, E) in the ground state of a
one-dimensional S = 1/2 antiferromagnet with gapless free S = 1/2 spinon excitations, the Haldane-

Shastry model with inverse-square exchange, which is in the same low-energy universality class as
Bethe's nearest-neighbor exchange model. Only two-spinon excited states contribute, and S(Q, E)
is found to be a very simple integral over these states.

PACS numbers: 75.10.3m, 71.10.+x

The integrable "Haldane-Shastry" model (HSM) [1,2)
is a variant of the S = 1/2 Heisenberg chain, with ex-
change inversely proportional to the square of the dis-
tance between spins, in contrast to the nearest-neighbor
exchange of the Bethe ansatz model (BAM) [3]. The
low-energy properties of the antiferromagnetic HSM are
in the same universality class as those of the BAM: the el-
ementary excitations are S = 1/2 objects [4] ("spinons")
obeying semion (half-fractional) statistics intermediate
between bosons and fermions [5], and the low-energy
fixed point is described by the k = 1 SU(2) Wess-Zumino-
Witten model, a c = 1 conformal field theory [1] . A
generic model in this universality class has marginally
irrelevant interactions that renormalize to zero at the in-
frared fixed point; this is seen in the BAM. The special
feature of the HSM is that such interactions are absent at
all energy scales [6]: It is in a very real sense the model
in which the spinons form an "ideal S = 1/2 semion gas, "
and may be regarded as the fundamental model for gap-
less half-integral spin antiferromagnetic chains.

While the correlation functions of the BAM have not
yet been obtained, the static (equal time) two-point anti-
ferromagnetic ground-state spin correlations of the HSM
are already known [1,2]. In this Letter, we extend this
result to the full dynamical spin correlation function:

H= J) [d(m —n)] S S„,
m&n

(2)

where d(n) = (N/7r) sin(xn/N) —+ n as the number of
sites N —+ oo. The HSM spinon dispersion relation is

e(q) = (v/~) ( /2)' —q'j, v = J/2,

(oIS (t)S„'(t')IO) = —,'&'(-1)--"C(m —n, t - t'), (1)

where our expression for C(x, t) is remarkably simple,
and directly related to the spinon spectrum. We will
first present the result, then describe the derivation.

The HSM Hamiltonian is

which is restricted to half the Brillouin zone (IqI ( x/2);
v is the low-energy spinon velocity. For N —+ oo, a
state with N» spinons has energy Q,. e(q, ) and crystal
momentum exp(iK) = (—1) exp(i+, . q, ), where M =
(N —N»)/2 must be integral.

Our concise expression for C(x, t) is

dM exp (4ivrTr(xMMo —2vt[l —(MMp) ])). (4)

(5)—1

where Q = nAiA2 and E = (7rv/2)(Ai + Aq —2AiA2).
Alternatively, if mAiA2 = qi+q2, and (qi —qz) = ~ (1—
A, )(l —A2), so Q = qi+ q2 and & = e(qi) + e(q2), C(~, t)
is also given by

vr/2vr/2
Iqi —q2I '(Q —Et) (6)

vr/2 —m/'2 [e(qi)e(q2)]'

Note that the S = 1 state S„IO) is completely express-
ible in terms of eigenstates of the HSM with only two

parallel-spin spinons carrying momenta qi and qp. Thus

The integral is over the manifold of 4 x 4 traceless Hermi-

tian unitary matrices M = M = (AL, crl. )(A~ cr~)&
where (craL } and (cr&) are two independent sets of 4 x 4
Hermitian generators that individually obey the same al-

gebra as the Pauli matrices, and which commute with
each other; Al, and AR are real unit 3-vectors. This
manifold is isomorphic to the product of two spherical
surfaces Sl x S&. The time-reversal operator for Pauli
matrices is v = icr, so (cr )* = wo a, and v = —1;
M obeys the reality condition M' = (v L,a~)M(el. v ~)
where (rl, rp) = 1. Mo = (z ol, )(z cry) is a point on

the manifold. Tr[MMo] = 4Ar 0& and Tr[1 —(MMo)z)
= 8[(AJ ) + (A~) —2(ALAR)'].

The invariant measure for the integral is the product
of rotationally invariant measures on S& x S&, and the
normalization is fixed so C(0, 0) = 1. Writing A~z(&&

=
Ai(2), this gives C(x, t) as

1 i

0031-9007/93/71 (24)/4055 (4)$06.00
1993 The American Physical Society

4055



VOLUME 71, NUMBER 24 PH YSICAL REVIEW LETTERS 13 DECEMBER 1993

gab 2'
dE S(Q E) i[Q( m n) —Z(t —t')j

where S(Q, E) is explicitly given by

r g(E (Q) E) 6(E —Ei (Q))
(Q)]'"

(6) explicitly expresses the correlation function in terms
of the physical excitations; this formula is the principal
result reported here.

(O~S (t)S„(t')~0) can be expressed in terms of the dy-

namical structure factor S(Q, E) as

@((Z')) = C'((Z')) (Z' —Z )' ZIt (10)

multiplets" [1,10] [of many degenerate SU(2) multiplets]
each containing a single Yangian highest weight state
(YHWS) which is the state of highest Jo in the mul-

tiplet. The set of YHWS span a subspace of states that
can be physically characterized as the "fully polarized
spinon gas" (FPSG) states [10], where all spinons have
maximally polarized spins. The wave functions for FPSG
states can be conveniently expressed in terms of M com-

plex coordinates Z, [with (Z, )~ = 1] of lattice sites (on
the unit circle) with reversed spins:

h . ( (m —n)Jr = —) cot] S x S„,
m(

(9)

where [II, J ]
= J ~0) = 0, m = 0,1. Here h is the

"quantum parameter" of Y(sl2); this is a scale parame-
ter, conventionally rescaled to 1. However, in the limit
N ~ oo, hN must be held constant, so h ~ 0. The sym-
metry algebra then is the "classical" infinite-dimensional
Lie algebra sl2+, which is the algebra of non-negative
modes of a Kac-Moody algebra: [J,J~] = ie ~'J'+„,
m, n & 0, with J ~0) = 0, m & 0.

HSM eigenstates are organized into Yangian "super-

here E -(Q) = (vi )Q( - Q) E+(Q) = (v/ )(Q—
vr)(2~ —Q), and E2(Q) = (v/2n)Q(27r —Q). Integra-
tion over F gives the previously known expression for
the static structure factor: S(Q) =

4 in(~1 —Q/vr] ) .

Our calculation is based on the identification of C(x, t)
as proportional to the bosonic single-particle ground-
state correlation function (0 4't (x', t') Ir(J0, 0) ~0) (with
x' oc x, t' oc t) for the Calogero-Sutherland model (CSM)
[7] of a spinless 1D Galilean-invariant gas with interac-
tions (h /m) [A(A —1)/(x, —x~)2], at coupling constant
P = 2A = 4, the coupling at which it is related to the
symplectic random matrix ensemble [8].

Though different in its technical details, a recent cal-
culation by Simons, Lee, and Altshuler (SLA) [9] of
(O~p(x', t')p(0, 0)]0) for the P = 4 CSM suggested our
calculation. Our result shows that the hole excitation
in this model fractionalizes into two semions [as in the
essentially similar bosonic Laughlin fractional quantum
Hall effect (FICHE) state at Landau level filling v = 1/2].
Our interpretation of the SLA expression [9] is that it
shows that the particle excitation remains elementary
(the FICHE analog is a particle added outside the Laugh-
lin droplet); inspection of their formula shows it to be the
convolution of our result for the fractionalized hole con-
tribution with a factor representing an additional particle
excitation outside the ground state condensate.

We first note that (for finite N) the HSM exhibits not
just SU(2) symmetry, with an associated sl2 Lie algebra
generated by Jo = P Sm, but a remarkable additional
quantum symmetry, the Ycngian Y(sl2) symmetry alge-
bra with the additional generator [10]

(Z, —z )~
~ 4 I

i&j
(Z, —Z, ) Zl

The fact that the initial polynomial factor is degree 2 in
each coordinate Z, immediately shows that this state is
composed only of states with boo spinon excitations.

The polynomial character of the FPSG wave functions
implies that when matrix elements of the Hamiltonian
between such states are calculated, sums over discrete
lattice sites on the unit circle can be replaced [1,6] by in-

tegrals of a continuous coordinate on the unit circle (the
compact support of the Fourier transforms of these poly-
nomials within the erst Brillouin zone in reciprocal space
means that all "urnklapp" corrections vanish). Thus cal-
culations for the HSM involving only FPSG states will

give identical results to analogous calculations for a con-
tinuous model, the A = 2 CSM on a circle. Then C(x, t)
oc (0]4~(x', t')@( , 0)0~0) where x' and t' are space and
time coordinates suitably scaled in terms of CSM units.

Because of the special form of the HSM and CSM
ground states, C(x, t) can also be written

where C ((Z, )) is a symmetric polynomial of degree N»
in each variable; the constraint M = (N —N»)/2 en-
sures that the Fourier transform of the wave function
has compact support within a single Brillouin zone. Di-
agonalization of the HSM Hamiltonian within the FPSG
subspace gives the YHWS. The other eigenstates are ob-
tained from the YHWS by repeated action of the Yangian
generators, and the multiplets are classified as irreducible
representations of Y(sl2) [10,11]. The structure of these
multiplets is reminiscent of that of the ideal S = 1/2
Fermi gas, where there is an independent spin degree of
freedom for each orbital; Y(slq) multiplets are also iso-
morphic to direct products of independent sl2 representa-
tions, but in contrast to the fermion case, the "orbital"
or "Fock space" structure changes with particle num-
ber. These degeneracies make it appropriate to identify
the excitations of the HSM as forming an "ideal spinon
gas" [6,10].

The operator S+ acting on a FPSG state removes a
down-spin coordinate, and preserves the FPSG character
of the state. The wave function describing S+ ~0) is

4056



VOLUME 71, NUMBER 24 PHYSICAL REVIEW LETTERS 13 DECEMBER 1993

(Z r)2 —i(H —Eo)t' (Z, —z)'lO). (12) in terms of matrix model units, and will be held fixed as
N ~oo.

The fundamental matrix-model correlation function is
We note that the method of our calculation can easily be
extended to obtain (Ol Q 4t(x~, t) Q @(2.",t') 0) where
n particles are removed at various places at one time
t' and replaced at different places at a different time t.
(The final integration over a manifold of 4n-dimensional
matrices will be more complicated, however. )

In the thermodynamic limit, the correlations of the
CSM for particles confined in a weak harmonic potential
that is rescaled to maintain a constant particle density
in some region become locally equivalent to those of the
same density CSM model on a circle. We use this Gauss-
ian formulation, since in this case [12], the dynamics of
the CSM particles become identieat to the dynamics of
the doubly degenerate eigenvalues of a Hermitian matrix
with matrix elements that are harmonic oscillators con-
strained so the matrix has Kramers degeneracy. This is
the Gaussian Hermitian matrix model [12] with symplec-
tic symmetry.

The action for the matrix model is

1 g goo'~o''o + goo ~cr'o' goo'~sr'cr
2 2g

2/0 o'

(17)

The determinant is given by a Gaussian Grassmann-
number integral:

det[Q(nt)] =
2O'

dry,
* (n)dQ, (n) exp Tr[A(n)Q(nt)],

where A,, (n) = g, (n) g,*,(n).
We now evaluate the harmonic oscillator correlation

function, using the standard harmonic oscillator re-
sult (OlTq exp Aq exp A2l0) = exp[(1/2) P, (0]TqA, A~]0)]
where A, are linear functions of the coordinates, and ob-
tain

(0]T&Tr[AQ(t)]Tr[BQ(t')] l0) = G(A, B)g(t —t'), (16)

where g(t) = (h/2tu) exp(ialt]), A and B are c-number
matrices, and G(A, B) is

S = ~~ dtTr[(Q) —~ (Q) ],

where Q is a 2N x 2N Hermitian matrix

Q=Sg 1+) A qyo. .

(13)

(14)

d4':. (n)d0-(n) e p S[(@,*.(n) @'-(n))l (18)

here S = +ST + (h/8w)S2 where Sq = P np and S2
= E.p[g p(t)]'G(A( ) A(&))»th

Here S is a real symmetric N x N matrix and A are three
independent imaginary antisymmetric matrices, making
2N~ —N independent coordinates in total. Then Q* =
TQT, where T =- 1 w, and T = —1, which ensures
Kramers degeneracy. The limit N ~ oo with a oc 1/N
is taken at the end of the calculation.

The SLA calculation [9] was originally a quenched ran-
dom matrix ensemble average, but can be reformulated
[13] in terms of a dynamical Gaussian Hermitian matrix
model, when it is equivalent to a calculation of

(OlT, Tr([Q(nt) —n2: + i0+] 'jl0),

which is a more complex calculation than the one we
describe here.

In (12), if the (Z, ) are interpreted as the doubly de-
generate eigenvalues of a unitary matrix U with Kramers
degeneracy belonging to Dyson's circular ensemble with
syrnplectic symmetry [8], Q,. (Z, —z)z—:det[U' —z]. In-
voking the large-N local equivalence of the eigenvalue
distributions of the circular unitary and Gaussian Her-
mitian ensembles [8], we identify the Gaussian matrix-
rnodel quantity we need as

(oIT~ de [Q(ni) —nell )

where the space and time coordinates have been rescaled

G(A(n) A(&)) = —
(& ppp + 2&:p6 ) (»)

and g p(&) = 6 p + (1 —6 p) exp(i~]tl). Here p p =
(n)~ (~) ~ p = E, r '@ (n)~ '(~)

4'*.p
= E... r 0;.(n)0;. (P)

We now carry out a bosonic Hubbard-Stratonovitch
transformation to decouple S2', ten independent real in-
tegration variables are required, which can be organized
into a 2 x 2 Hermitian matrix V~@ coupling to p p and
a 2 x 2 complex symmetric matrix 6 p coupling to P p,
with 6*

p coupling to P*p. These can in turn be organ-
ized into a 4 x 4 matrix M(V', A, A') where M~&, py =

Provided Vp = (V p)' and 6*p ——(Ap )*, this matrix
is Hermitian, and obeys the reality condition

M* = (1 g o')M(1 g ~'). (20)

Such a matrix has the ten-parameter form

M=G 1+) G crloR,
ab

where C is a real number and C is a real 3 x 3 matrix.
The explicit realization of the generators is crL, = (o 2

o, —o Iso', 1o ) and rrR = (rr rr, rr t31, rr o). '

The unitary transforrnations generated by frrl, crR} cor-
respond to a G =SO(3)L,SO(3)R continuous symmetry
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group, under the action of which C ~ OL, COR .
We now take the large-N limit with w oc 1/N, and

x', t' O(l). The Grassmann integrals decouple into a
product of N identical integrals leading to a factor

(det[M+ iN 6M]) (22)

where (dropping scale factors in x' and t')

bM = (x' —t'[M, Mp])Mp, (23)

rp = Tr(x'MMp —t'[1 —(MMp) ]). (24)

There are five classes of solutions of the condition M2
= 1 corresponding to the five possible signatures 8 = +4,
k2, and 0 of M, all with Tr[M] = s and C = s/4.
For s = +4, there are two discrete solutions with C =
0, invariant under the full group G. For s = +2, C =

0, where 0 is orthogonal, which is invariant under the
SO(3) subgroup of G where Ol, = OO~O i, giving two
manifolds of dimension 3. Finally, for s = 0, C = A&A&
where Al. (~1 are unit 3-vectors; this is invariant under the
O(2)L, C3 O(2) R subgroup of G where OL, (~) is a rotation
around Al, (~1, and forms a manifold of dimension 4.

When the same extremal value occurs on several difFer-

ent manifolds, only manifolds with the largest dimension
contribute to the integral as N —+ oo. The measure for
the integral over the dominant s = 0 extremal manifold
is just the invariant measure on Sz x S&. To complete
the derivation of (4), the space and time variables x' and
t' must be rescaled into HSM units. This is accomplished
by noting that the two-spinon states span a momentum
range of 2~ and an energy range of harv/2.

Finally, we comment on the relation between our HSM
result (6) and the BAM correlations. An ansatz similar to
the exact HSM result (8) for S(Q, E) has previously been
proposed [14] as an approximation to the BAM structure
factor. The key simplification in the HSM is that only the
two-spinon excited states contribute to S(Q, E) at T = 0.
ln the BAM, the numerical studies [14] show that while
these states dominate the spectral weight, there is a finite

Mp = (cr Ia 1). The correction 6M shifts the
matrix in the determinant resulting from the Grass-
mann integrals away from the Hermitian value M of
the Hubbard-Stratonovich fields, but this does not af-
fect the validity or convergence of the Grassmann in-
tegral. Using the identity det[M]—:exp(Tr[lnM]),
the value of the integrand for large N, with the
Gaussian Hubbard-Stratonovich factor included, be-
comes (det[M] exp( —Tr[M ]/2)) exp(i&p) where p =
Tr(M (x' —t'[M, Mp])Mp) . The factor which is ex-
ponentiated to a power N is maximized when M2 = 1,
or M = M, so at the extremal points,

contribution from the N» ) 2 states which, while small,
presumably remains finite for any large but Finite N, ~.

A variant of the HSM with N = oo and d(n)
r i sinh(rn), r real, has been identified [15] as a fam-
ily of integrable models that interpolate between the
N = oo HSM (r = 0) and the BAM (r = oo). These
models also have a Y(sl2) quantum symmetry [10] gener-
ated by the analog of (9) with cot[~(m —n)/N] replaced
by i coth[r(m —n)]; this realization of Y(sl2) goes over
smoothly into its more familiar realization in the N = oo
BAM limit.

The Yangian quantum parameter h must be rescaled
to zero to keep h/r constant in the HSM limit r ~ 0
with N = oo. The reverse process by which the "classi-
cal" sl2~ symmetry at r. = 0 becomes the Y(sl2) "quan-
tum" symmetry when r & 0 is a "quantum deforma
tion. " We speculate that the extension of the K = 0
result (6) to the r & 0 model [15], and thence to the
r = oo BAM limit, may be achievable as such a "quan-
tum deformation. " In this scenario, there is an expression
for C(m, t; r) as an expansion in multispinon terms with
N, ~ = 2, 4, 6, . . . , oo; when r = i7r/N the N, ~ & 2 terms
would vanish, giving the finite-N HSM correlations.
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