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Divergence of the Point Tension at Wetting
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To determine the behavior of the line-point tension r" at the wetting transition, we consider a two-
dimensional Ising model with appropriate boundary conditions and investigate suitable definitions of r"

associated with the junction of an interface tilted with average angle 0, and another lying along the sub-
strate. Size-dependent fluctuations in the point of contact require that i be defined through a convolu-
tion sum. Hence r" = In(l/8, ) as 8, 0 (wetting transition), which can be understood as a consequence
of the entropic repulsion of the tilted part of the interface against the substrate.

PACS numbers: 68.45.6d, 05.50.+q, 05.70.—a, 82.65.Dp

Consider the common situation where two phases a
and P meet at a wall (or third phase) co with an angle of
contact of 8, between the aP interface and the Pro inter-
face. As one approaches the surface wetting transition
(for reviews, see, e.g. , Refs. [1,2]), where, say, the P
phase wets the ac@ interface at a temperature T„, 0, 0
as temperature T T„ from below, and the surface ex-
cess free energy (per area) f" will have a singular part of
the form f,";„s—t ", with t =(T„—T)/T . Suppose
one is able to associate a free energy per length, r", called
the line tension [3], with the line of contact of the aP in-

terface and co. An intriguing question to ask is whether r"

has any interesting singular behavior as Tf T„analogous
to that of the interfacial and surface tensions as the bulk
critical point is approached. This has been the subject of
much recent work which has been largely mean-field-like
in character [4,5]. A mean field theory involving an in-
terfacial displacement model [5], which fixes the line of
contact in some laboratory frame, predicts that ~ ~ —0,
as 8, 0 for critical wetting. A nonclassical scaling hy
pothesis has recently been proposed [6] where if
r"„„s-t " as t)0 an. d the correlation length parallel to
the wall g~~ diverges like g~~

—t "" as t )0, then the follow-
ing exponent relation holds:

al =a, + V~].

Line tensions have also been considered experimentally
[7] including in recent studies of the decay time of sur-
face metastable states via nucleation near wetting [8].

A Gibbs' thermodynamic argument [3] implies that r"

stays invariant under parallel translations of the arbitrary
Gibbs' dividing surfaces. However, with some exceptions
[9,10], very little has been said about the efl'ect of fluc-
tuations in the tilt of the aP interface around 8, or in
transverse (capillary-wave-like) fluctuations in the con-
tact line itself. Such fluctuations may prevent one from
uniquely defining a line tension that stays finite in the
thermodynamic limit. With these issues in mind, it seems
timely to present the results of a treatment based on an
exactly solved two-dimensional model where the line ten-
sion is replaced by a "point" tension —i.e. , a free energy
associated with the point of contact between a sloping in-

terface (now a line) and a wall.
Consider a nearest-neighbor Ising ferromagnet on a

square lattice with zero bulk field but with spins fixed on
the boundary so that a domain wall crosses the system as
shown in Fig. 1. By weakening the vertical bonds con-
tiguous with fixed spins on the lower boundary a wetting
transition can be induced as has been shown by studying
the thermodynamics [11] and spin [11] and excess-
energy-density distributions [12]. The exact mean shape
of the interface is also given by a Wulfl construction and
is composed of two line segments, the one crossing the
strip being inclined on average at a contact angle 0„ the
value of which is given by the following Young equation,
modified by the inclusion of the second term on the left-
hand side which takes into account the anisotropy of the
surface tension o(8) on the lattice [12]

cr(8, )cos8, —o'(8, )sin8, =f" . (2)

The crucial fact which has to be added to the thermo-
dynamic picture is the existence of large fluctuations in

the interface as it crosses the strip, growing as JZ. In
the associated solid-on-solid (SOS) model [13], the point

+ + + + + + + + + + + + + + + t
(o, r )

(x,0) (v, o)

FIG. 1. Phase separation by fixed-spin boundary conditions,
equivalent to a surface field acting on the spins next to the
boundary. The bottom edge of the strip has bonds of reduced
strength in the (0, 1) direction abutting the line y =0. Provided
the temperature is low enough, the interface stays near the bot-
tom edge as it moves from right to left until it crosses the strip
at a mean angle of 0,. The partially wet layer well to the right
of (x,0) behaves exactly like the wetting film in Ref. [11];it is
characterized by length scales parallel and perpendicular to the
edge, gii and g&, respectively.
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of first contact of the domain wall with the line y =0
given by xp fluctuates about its mean value x, (given by
the Wulfl' shape, x, =L cot8, ) asymptotically as

((xp —x, ) '& =
sin 8,Z(8, )

where Z(8, ) =a(8, )+o( )(8,) is the surface stiffness
[14]. This can be seen more simply from an argument
based on fluctuation theory [13] analogous to that of Ref.
[14].

As explained in the introduction, we want to associate
a free energy with the joining of the two linear portions of
the mean interface shape. Our definition of the point
tension r is

(3)

(0,L)
(o, L)

+

(x,o)
+ + + + + + + + + + (x,0) +

+ + + + + + + + + + +
((), L)

(x,o) (x,0)

(iii) (iv)

FIG. 2. Schematic picture showing the average location of
the interface as a thick line for the four cases considered for
QL(x): (i) and (li) are definitions after Dobrushin, with (i),
but not (ii), retaining entropic repulsion with the boundary
walls of the original strip in Fig. 1. (iii) shows the Fisher-
Ferdinand definition where the interface is induced by the
ladder of reversed bonds as indicated, and (iv) is a hybrid which
does not restrict the interface at its lower end, but the restric-
tion at the upper end "cancels" with that in Fig. 1 when the an-
gle of tilt is the same.

expr"= lim lim g Ql. (x)Z(N —x)/Zq(N),
I ~ oo P/~ oo ~ ~

where ZI. (N) is the exact partition function (PF) for the
boundary condition shown in Fig. 1, Z(N —x) is the PF
with the interface beginning at (0,0) and ending at
(N —x, O) with the same wetting boundary field as in

Zl. (N). The reason we have a sum over x is that, as Eq.
(3) suggests, the point of first contact of the domain wall
with the bottom face xo fluctuates strongly. Although
values of xp which deviate from x, by more than 6(JL )
are relatively unimportant, the unrestricted summation
makes the calculations easier.

We have investigated four choices of Ql. (x), the PF for
the interface crossing from (O, L) to (x,O): These are il-
lustrated in Fig. 2. Definitions (i) and (ii) are of
Dobrushin type [2,15]; (iii) is due to Fisher and Ferdi-
nand [16];and (iv) is a hybrid of (i) and (iii) of our own

devising. The Fisher-Ferdinand definition inserts into a
system, which is either up or down magnetized, a "con-
nected" ladder of exactly reversed bonds, L horizontal
and x vertical ones joining the two points (O, L) and
(x,O). The surface tension is then extracted from a quo-
tient of partition functions in the usual way [16]. The in-
terface becomes a path of frustrated bonds with no
geometrical restriction, unlike cases (i) and (ii). That the
surface tension should be the same follows from duality
arguments, but the finite-size corrections diA'er signifi-
cantly. In case (iv), we want the domain wall restriction
to be the same at the upper point (O, L) as in Fig. 1, but
to allow any approach to the final point (x,O). We do
this by bringing the reversed-bond ladder up to an edge of
the system, where the spins are forced to be up, contain-
ing the point (O, L). The dual of the partition function
ratio is then a pair-spin correlation function for a half
plane with one spin in a free edge but the other tending to
the bulk, something which we have determined exactly.

The crucial ingredient of ~ is the entropic repulsion
from the substrate line [17]; this vanishes when (i) is
used since the entropic repulsion in the denominator is
completely canceled by the numerator. This is a most un-

ifying concept in this field. The results near wetting are
(i) i is analytic in 8, at wetting; (ii) and (iii) i=2
&&In(1/8, ); (iv) r" = ln(1/8, ) (the symbol "="denotes
the exact asymptotic form, prefactors included). Recall
that in two dimensions 8, —t as t )0 as a detailed analysis
of Eq. (2) shows. We make the following remarks:

(1) Ignoring all terms in the convolution sum (4) apart
from the maximal one given by the WulA' value x, gives a
divergent i for any 0 & 8, & x/2; fluctuations in the point
of contact cannot be ignored, even at a thermodynamic
level. This is a crucial point, the details of which will be
published at length elsewhere [13].

(2) In the calculations of r", the convolution sum in (4)
was evaluated exactly before taking the limits (further
details of this are given below). However, we also
confirmed that performing the sum around the maximal
values of the partition functions for large I, and N, which
are peaked at the Wulff value x =x„and including only
Gaussian corrections (as in the usual Laplace method for
asymptotic analysis of sums) gives identicai results for r".

Thus, only quadratic fluctuations in the WulA shape are
needed in the determination of v.

(3) In the associated SOS model, the two linear pieces
of the interface are independent and the PF can be writ-
ten

ZL (N) = g QL(')(x)Z(N —x) (s)
x 1

with the (i) indicating that definition (i) is being used.
Thus, Eq. (4) gives a point tension that is zero when us-
ing definition (i) for QL(x). For case (iv), the entropic
repulsion of the tilted part of the interface against the
wall is contained within i. For cases (ii) and (iii) we get
twice this entropic repulsion (coming from both the upper

405



VOLUME 71, NUMBER 3 PH YSICAL REVIEW LETTERS 19 JuLY 1993

and lower walls) and hence the results differ from (iv) by
a factor of 2. We have calculated this entropic repulsion
in the SOS model and it behaves like In(1/8, ) near wet-
ting. This indicates that in the Ising model the dominant
part of the point tension near wetting comes from the en-
tropic interaction of the long contour with the wall.

(4) The logarithmic anomaly r" = In(I/t) as r )0 is con-
sistent with the scaling ansatz of Indekeu and Robledo
[6]. This is because the result a1=2(log) together with
the known results a, =0 [11] and v11=2 [18] satisfy the
required exponent relation Eq. (1).

(5) The correlation length f11 for the axial pair-energy
function has been obtained for an Ising strip with bound-
ary conditions as shown in Fig. 3, where a typical domain
wall configuration induced by the opposed surface fields is
also shown. An energy-entropy balance argument of the
type first used in this field by Privman and Fisher [19] al-
lows estimation of the mean spacing between consecutive
unbound parts of the domain wall. Making the reason-
able assumption that this is the correlation length f11 gives
us

(II —exp(&F/&a T )

=exp[2r" +L[rr(8, )cscO, f "cot8,—]], (6)

where h,F is the free energy fluctuation of a single un-
bound segment as given in the succeeding equation. An
exact result for (11 is known [20] from which, using (6),
one can identify z which has a logarithmic divergence
identical to that calculated directly from (4) using the
hybrid definition (iv) for QL(x). These ideas also extend
to higher dimensions. Consider, for example, pair corre-
lations in a pore for a system isomorphic to the uniaxial
ferromagnet. The asymptotic behavior of the pair corre-
lation function is given by a correlation bubble [20]; sup-
pose the bubble is typically bound to the cylindrical sur-
face of the pore. Then the decay is generated by a free
energy fluctuation of the bubble which contains surface
tension generated area contributions from the sides of the
cylinder and the conical end caps and two contributions
from the line tension proportional to the circumference of

where

&/2

el% ggD+(ro) =
elN

~ i/2
leo

D (ro) =

with A =exp2(K1+K2 ), 8 =exp2(K1 —Kz ) and K1 and
K2 the coupling constants along bonds in the (0, 1) and
(1,0) directions, respectively. Here we use the duality re-
lation exp( —2KJ*) =tanhK~. The prefactor c depends
only on K~ and K2. Also we have used the Onsager func-
tions [23]

coshy(ro) = cosh(2K1*)cosh(2K2)

—sinh(2K1 )sinh(2K2) cosco,

the pore. The fluctuations in the joining of the conical
and cylindrical parts are, of course, taken up in the line
tension definition.

(6) In three dimensions, a model for the line of contact
which imposes the SOS constraint on the interface in
directions parallel to the substrate [13], along with more
phenomenological "capillary wave" models [10], gives a
root-mean-square deviation of the contact line going like
JlnL for a wedge of height L. Such models are expected
to give the correct size-dependent statistics of the contact
line (as they do for the contact point in two dimensions).
Thus, although weaker in three dimensions, large fluctua-
tions in the contact line are still present, indicating that a
convolution definition of the line tension, analogous to Eq.
(4), may still be necessary. Previous studies of the line
tensions, supposedly applicable to three dimensions, have
ignored this question. These considerations are, of
course, relevant only in the case of a rough interface. In-
terfaces in the three-dimensional Ising model are known
to be smooth at low temperatures [21]. Therefore,
resolving this issue using the Ising model is likely to be
very diScult.

The key to the calculation of z is that for definition
(iv) duality with a pair-spin correlation function [16,221
gives

e e'""[D—(ro) —D+ (ro) 1
L(x) = dco2~» 1 + —ib'(co)

+O(e " )

e "' '=(A/B)' 'D+(co)D (ro) . (10)

FIG. 3. Ising strip at coexistence with equal and opposite
fields on the boundary of such a magnitude that the induced
domain wall is pinned, but jumps from edge to edge, crossing at
an angle 8, and giving a long correlation length gt~. The bends
at the ends of the bound portions give a point tension contribu-
tion to the free energy fluctuation.

From Ref. [11],
2K2 t 2~ ixcoC

(x) = d~ ) +O(e —2L tol) (11
2z & & A(ro)

where

2 (ro) =sinh2K1 cos[8*(co)/2] (e "t" —w)/sinh2h, (12)

C(co) =sinh2K1sin[6*(ro)/2](e" —e 'w)/sinh2h

with
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w =e '(cosh2Kj —cosh2h)/sinh2K~ (i4)

whose asymptotics are given by the complex conjugate of
the pole dominating (11).

To summarize, we find that large size-dependent fluc-

tuations in the point of contact force us to define a point
tension z through a convolution sum. This procedure was
carried out on an exactly soluble model. Four choices of
the convolution function, QL (x), were considered, al-

though only one of them, definition (iv), takes proper ac-
count of the entropic repulsion of the tilted part of the in-

terface against the wall ~ Entropic repulsion gives rise to a
logarithmic divergence of z at wetting. This property of
z is consistent with an indirect identification of z through
the correlation length g~~ parallel to the edges of an Ising
strip with opposite aligned edge fields of equal magnitude.
Although our results are confined to two dimensions,
some of the basic issues raised here may well be impor-
tant in three dimensions (since here the line of contact
also has size-dependent Auctuations, albeit weaker) and

these need to be addressed before one can be confident in

one's definition of the line tension.
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