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Excitations of the Strongly Correlated Electron Liquid in Coupled Layers
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The low-lying excited states in a system of coupled layers of electrons in a gallium arsenide
heterostructure are strongly affected by many-body correlations between the electrons for densities
as high as r, = 5. For a layer spacing of less than 100 nm the function Im„(q, a~) near q = 1.9k+
has a large peak at small u which is apparently a soft-mode precursor to a charge density wave
instability. This new peak should be observable with present experimental techniques in realistic
samples. The linear gradient of the "acoustic" plasmon is depressed so much by many-body eÃects
that for r, = 5 it can become degenerate with the single-particle excitation spectrum for all q.

PACS numbers: 73.20.Mf, 71.45.Gm

While the correlated electron liquid has been a ma-
jor theoretical challenge for many years [1—8] it is a sys-
tem that has proved extremely diFicult to investigate
experimentally. Electron layers in III-V semiconductor
heterostructures should in principle be excellent systems
for studying the strongly correlated two-dimensional elec-
tron liquid but unfortunately at the relatively high densi-
ties currently attainable experimentally the electrons are
only weakly correlated and until now it is only when an
external magnetic field is applied that the effect of strong
correlations can be observed in such phenomena as, for
example, the phase transition of the liquid to the in-
compressible fI.uid of the fractional quantum Hall ground
state.

One can also have two or more layers of electrons
confined in parallel planes. Within the random phase
approximation (RPA) the dielectric function, electronic
properties, and the collective excitations have been in-
tensively studied for a finite number of layers [9—15] and
also for a superlattice of layers [16—20]. In the study of
light scattering the density-density correlations were cal-
culated and optical properties investigated [21—23]. Cor-
relations beyond the RPA have been included for the
superlattice by Zhang and Tzoar [24] and by Lu and
Golden [25, 26].

The effect of correlations on the nature of the ground
state for the two-layer system and for superlattices has
been investigated by Swierkowski et al. [27]. With more
than one layer the Coulomb interactions between elec-
trons in the different layers can significantly increase the
strength of the correlations. The underlying reason is
that even when the layers are far enough apart so there
is no hopping, the electrons in difFerent layers still couple
through the Coulomb interaction and this causes elec-
trons in one layer to act as a polarizable background for
electrons in the other. This additional degree of freedom
permits transitions from the electron liquid to inhomoge-
neous ground states to occur at relatively high electron
densities [27]. In particular, transitions to charge density

waves may occur at densities currently attainable exper-
imentally. However, charge density waves are diFicult to
observe directly unless they are pinned to defects [28].

If the nature of the ground state can be so markedly
affected by these correlations, one might expect the dy-
namic properties and the spectrum of low-lying excited
states of the liquid phase to be dramatically affected near
to the transition. In this paper we investigate the double-
layer system in zero magnetic field at the relatively high
densities r, = 5 to 8, calculating the elementary excita-
tion spectrum when the spacing between the layers takes
the liquid phase close to the charge density wave insta-
bility. For a density of r, = 7 the instability occurs
when the layers are of the order of 25 nm apart which
is still sufficiently large for hopping between layers to be
neglected.

In the two-layer system there are two plasmon modes,
an in-phase mode for which the oscillations in the two
layers are in-phase and an out-of-phase mode for which
they have opposite phases [10]. Of the two modes the
in-phase mode has the higher energy. The acousticlike
linear dispersion of the out-of-phase plasmon at small q
is caused by the additional screening from adjacent layers
which nullifies any long range electric field.

In Fig. 1 we show the dispersion curve at r, = 5 of
the lower lying collective excitation at zero temperature
and in the absence of defect scattering when the spacing
between the layers is a = 25 nm. Although within the
pure RPA the plasmon has been shown to exist for small
rl at all densities [ll], we find that the dispersion curve
is sensitive to many-body correlations even at small q.
This is due to the linearity of the curve. For a = 25 nm
and r, & 5, many-body correlations depress the curve
so much compared with the RPA curve that it is degen-
erate with the single-particle excitation spectrum essen-
tially for all nonzero q. In this case strong correlations
can completely destroy the acoustic plasmon as a sepa-
rate mode even when there is no smearing of the single-
particle boundary by defect scattering or thermal effects.
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FIG. 1. The dispersion curve at r, = 5 in the absence
of defect scattering and at zero temperature for the lowest
energy plasmon mode corresponding to g (q, u) (solid line)
compared with the RPA result (dashed line). The spacing
between the layers is a = 25 nm.

At a = 25 nm tunneling between the layers is still negli-
gible, and since for r, ( 5 the mode does exist the dis-
appearance should be observable by applying a suitably
varying gate voltage which sweeps the density through a
small range centered on r, —5.

The most notable result from our calculations is the
prediction of a strong renormalization of the liquid ele-
mentary excitation spectrum into a new soft quasimode.
Figure 2 provides a view of the overall spectral strength
of the elementary excitations in the system for a layer
spacing a = 25 nm and density r, = 7.35. The tem-
perature here is taken to be T = 0.5 K with a defect
scattering time w corresponding to an electron mobility
of p, = 10 Vcm . By r, = 7.35 the acoustic plasmon
has already merged with the single-particle excitation re-
gion. Around q = 1.9k~ there is a strong shift of single-
particle spectral strength towards zero energy. This in-

dicates a concentration of low-lying excited states with a
density modulation period close to that of the incipient
charge density wave instability [27]. The appearance of
this mode indicates that it costs relatively little energy
to excite the system into a state with a periodic modu-
lation of the density. The closer the soft mode is to zero
energy the longer spontaneous Huctuations into a density
modulated excited state can remain and there would be
a tendency for the system to be unstable to a periodic
charge density wave ground state.

As the precursor of the charge density wave ground
state in the liquid phase the soft mode could be used
to experimentally confirm the existence of charge den-
sity waves. A sizable new peak appearing in the imag-
inary part of the liquid dielectric response function at

FIG. 2. Imp (q, cu) for r, = 7.3. There is no plasmon
collective mode. Note the large peak near q = 1.9A:~ for
small a. vq~ = 2vre /kp where kF is the Fermi momentum.
The spacing between the layers is a = 25 nm, the sample
temperature is T = 500 mK, and the mobility of the sample
is p, = 10 Vcm

q = 1.9kF and small a would be observable using stan-
dard Raman scattering techniques.

We can follow the position of the charge density wave
precursor peak as a function of density for fixed values
of the layer spacing, temperature, and defect scattering
rate. Figure 3 shows the imaginary part of the total re-
sponse function as a function of ~ at fixed q = 1.9k~.
For a = 25 nm the actual instability occurs at r, = 7.63,
and as the density is lowered towards this value the peak
grows sharper and moves towards zero a in a manner
analogous to the paramagnon peak in spin systems. The
sharpness of the peak very close to the transition is lim-
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FIG. 3. Imp (q, a) at q = 1.9kp as a function of layer
density. The actual instability occurs at r, = 7.63. The labels
on the curves refer to the r, values. The dotted line shows
Imgo(q, u) which for these axes is r, independent. The spac-
ing between the layers, the sample temperature, and mobility
are as in Fig. 2.
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ited primarily by defect scattering. For electrons in gal-
lium arsenide at density r, = 5 the momentum transfer
q = 1.9kF corresponds to 5 x 10 cm which is within
the current observing range for Raman scattering [29].

The calculation is unchanged if there are two layers of
holes rather than electrons. Recently Santos et al. [30],
taking advantage of the larger effective mass of holes in
gallium arsenide, have reported the fabrication of high
mobility single layers of holes at densities much lower
than r, = 5.

The above results have been deduced from the dielec-
tric response function yt~ (q, w) where l, l' = 1, 2 number
the layers and q is the wave vector within the plane of
the layer. The response function has two eigenvalues

x+(q, ~) = x'(q, ~)
1+ (Vrr(q) [1 —G(q)] + Vr2(q))y'(q, ~) '

x'(q, ~) = x'(q, ~ —v')
1 + ~' 1 x'(~ ~—w')

x'(~)

where y (q, u) is the finite temperature response func-
tion for the noninteracting electron gas (the Lindhard
function) . For noninteracting electrons Eq. (2) corre-
sponds to Gotze s generalized relaxation time approxi-
mation [32]. We are mainly interested in relatively clean
systems so p' can be approximated by a single imagi-
nary parameter (ir) r in which case Eq. (2) agrees with
Mermin's expression [33] for the response function. The
transport relaxation time 7 is the time between succes-
sive scatterings of the electron off defects and is related
to the electron mobility p, parallel to the layer by the
usual Drude expression.

corresponding to the two density eigenvectors tnt(q).
The + and —label density modulations in the two layers
that are in phase (+) and opposite in phase (—). y'(q, u)
is the single-particle (proper) response function within a
layer, U»(q) and Uzz(q) are the bare Coulomb interac-
tions within each layer, and Vr2(q) is the bare Coulomb
interaction between layers. Vrr (q), V2q(q), and Vr2(q) all
incorporate form factors due to the envelope functions in
the direction perpendicular to the layer [27].

The static local field within a layer G(q) is deduced [8,
27] from Monte Carlo numerical simulation data for the
ground state of the two-dimensional electron liquid [31].
The G(q) affects the magnitude of the static polarizabil-
ities of the layers which in turn determine the position
of the liquid ground state instability. We know from the
data in Ref. [31] that even though electron correlations
are important in the electron liquid at these densities, a
local field can accurately parametrize the ground state
properties of each layer.

Elastic scattering by defects in real samples is in-
cluded by introducing a single-particle memory function
p'(q, ~) [8] into the expression for y'(q, ~),

We numerically determined the acoustic plasmon dis-
persion curve in Fig. 1 by following the zero in the de-
nominator of Eq. (1) for zero T and p'.

The charge density wave instability in the liquid state
is also caused by the denominator of Eq. (1) going to
zero but this time in the limit of u = 0 in the re-
gion near q = 1 9kF. S.ince our Rey (q) is positive
for this value of q the denominator can only vanish if
Vrr(q) [1 —G(q)] —Urq(q) is negative. For low densities

G(q) develops a peak higher than unity in this region
of q. The interlayer potential Vr2(q) is larger when the
layers are close together and this pushes the denomina-
tor of Eq. (1) even closer to zero. We conclude from this
that the instability is more likely to occur when the layer
density is low and the layers are close together.

The instability is not the same as the well-known
charge density wave instability which occurs at q = 2k~
within the Hartree-Fock approximation for the electron
liquid. This can be recognized from the fact that the
instability results from the vanishing of the denominator
in Eq. (1). It does not appear when there is only a single
layer.

We have omitted the efFect of correlations between elec-
trons from different layers since a more complete calcu-
lation including such correlations shows that interlayer
correlations do not affect the nature of the transitions
nor the low-lying excitation spectrum and for a given
layer spacing the density at which charge density wave
instabilities occur decreases only fractionally [34].

We conclude that many-body correlations between
electrons significantly affect the nature of the low-lying
excited states of two-layer electron systems at densities
as high as r, = 5. They destroy the lowest-lying B.PA
plasmon as a separate mode when the separation between
layers is still sufficiently large to prevent tunneling and
this effect should be observable using currently available
samples. The new quasisoft mode peak in the imaginary
part of the liquid dielectric response function y (q, u)
occurs around q = 1.9k~ which for an electron liquid at
density r, = 5 in gallium arsenide corresponds to a mo-
mentum transfer of 5 x 10 cm, a value which is within
the current observing range for Rarnan scattering [29].
Experimental observation of this quasisoft mode peak
would be strong evidence for the existence of a charge
density wave instability.
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