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Because of the recently raised suspicion about the correctness of the conventional (axial) identification
of He-A, we have studied the flow properties of the axiplanar state, the only other possible candidate for
the A phase. We show that for small "planar" mixture, both phases have very similar flow properties.
However, the superflow of the axiplanar phase is always more stable than that of the axial phase, in
qualitative (though not yet quantitative) agreement with current experiments. We also propose a
method to distinguish these two states clearly using flow experiments.

PACS numbers: 67.57.De, 43.35.+d, 47.20.—k

Since its discovery about twenty years ago, He-8 has
been identified with the so-called Anderson-Morel or axi-
al state. In a recent paper [1], summarizing his recent
works and a reanalysis of previous thermodynamic mea-
surements [2], Gould has questioned the correctness of
this identification. He pointed out that the current ther-
modynamic measurements cannot rule out a much less
well-known candidate, namely, the axiplanar state.

The axiplanar state was first suggested by Mermin and
Stare [3] in the early days of He-A as a possible candi-
date besides the axial state. Stare [4] also showed that,
like the axial state, the axiplanar state exhibits longitudi-
nal and transverse NMR frequency shifts. Despite its
compatibility with early experiments, the axiplanar phase
has never been studied in detail because of the popularity
of the much simpler axial state, which was thought to be
consistent with all experiments until now. In addition to
the thermodynamic measurements [2], Gould and co-
workers have also found discrepancies in the axial inter-
pretation in both zero sound [5] and flow measurements
[6]. For the latter, a series of experiments was performed
to map out the phase boundary for the transition from the
uniform to helical texture in parallel superflow and mag-
netic field. It was found that the transition takes place at
velocities unaccountably higher than those predicted for
the axial state [7]. A recent measurement by Hall and
Hook [81 on the ratio of longitudinal and transverse
superfluid density p~~/p& of He-A near T, also shows that
it lies above the axial prediction (i.e. , —, ) by about 10%.
While it is conceivable that this discrepancy can be
caused by textural effects despite efforts to eliminate
them, it has a simple explanation in the axiplanar picture.
In view of the rising suspicion of the axial interpretation,
it will be useful to have a better understanding of the
properties of the axiplanar state, especially those that can
distinguish it from the axial.

The purpose of this paper is to study the flow properties
of the axiplanar state. As we shall see, the axiplanar
state can be regarded as a mixture of the axial and the
so-called "planar" state. The planar admixture (however
small) changes the symmetry group of the axial state
completely. As a result, unlike the axial state, it is possi-

8„;=4[f3((e~+ ige2) —rif ~e3]„;e'

where & is the overall magnitude, g, g, and r) are all posi-
g +g +r) =1. The phase 0 displays the gauge

symmetry. The axial state corresponds to g=(= I/Jp,
g =0. In this case, it is well known that the phase factor
can be absorbed into the orientation of the vector el+ie2.
Minimizing the bulk free energy using the axiplanar or-
der parameter, it is straightforward to show that [4]
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where the P's are the coefficients of the quartic terms of

ble to define a global phase for the axiplanar order pa-
rameter. This means that it has the usual type of
superfluid velocity like that of He and He-B, and not
the peculiar kind of the axial state. However, in the limit
of a small planar mixture, the flow properties of axial and
axiplanar states are very similar. Despite the fundamen-
tal difference in superfluid velocity, essentially all the key
features of the axial state are intact in this limit, i.e., the
existence of a "textural" axis, nonsingular vortices, and
the helical distortion of the texture in the presence of a
strong superflow. There are, however, qualitative differ-
ences. Unlike the axial state, the axiplanar superfluid
density is not axisymmetric. Near T„ the ratio between
the longitudinal and transverse superfluid density is gen-
erally greater than 2 and is pressure dependent. A
similar but more subtle feature occurs in the helical dis-
tortion of the texture induced by a parallel superflow u

and magnetic field H. When both u and H are expressed
in appropriate dimensionless units (defined later as w and
h), at temperatures close to T„ the boundary in the w-h

plane separating the uniform and the helical texture is
pressure dependent (independent) for the axiplanar (axi-
al) state. These pressure dependences provide a simple
and direct way of distinguishing these two phases.

(I) The axial and axiplanar order parameter The.—
order parameters of p-wave superfluids are 3 & 3 complex
matrices 2„;,where p and i are spin and orbit indices, re-
spectively. The axiplanar order parameter is
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the bulk free energy. We have used the standard nota-
tion Pjq =(Pt+P~+Pk+ ). Note that in the limit of
small P4s, Eq. (I) can be written as a sum of an axial
state f3(e~+ie2) with a small planar admixture (g/g—I) r,e, —(~/g) r, e,.

Figure 1 shows the relative stability between diff'erent
p-wave states in P space that are consistent with the ob-
served A-phase properties (i.e. , nonreduced susceptibility
and no spontaneous magnetization) [3,4]. The results of
Tang et al. in Ref. [2] have constrained the P's near T, to
lie on a curve at a given pressure. With these constraints,
further determination of either P3 or P4s at a given pres-
sure would have identified the order parameter of the 2
phase. As we shall see, the stability of laminar flow can
provide precisely what is needed for this identification.

(II) Superguid density, laminar Pow, and its stabil

2

ity. —By laminar flows, we mean order parameters of the
form 2„;=e' "' "8„;,where 2 is constant in space and
the phase factor describes a uniform superfluid velocity
v, =ui. In the following, we shall also consider a mag-
netic field H parallel to z, which is the experimental
configuration [6]. The orientation of A is determined by
minimizing the total orientational energy F„=F~+FD
+FH, where

F, =-,' [K,a, A„,a,A„*,+K,e,A„,a, A„*,+K,a, A„,a, A„*,],
Fo =gD[tTrA

t
+TrAA* ——', TrAA t],

FH =gHH„(AA t)„,H, .

With A given by the axiplanar form, Eq. (I), these ener-
gies become

FG =— & u [Kz+K/3[& (e~ z) +g (ez z) .+tl (e3 i) ]/,
2 6

Fo =god [((f3 e~ —tlf~ e3) '+ ('(f3 e~ ) ' + tI (f~ e3) ' + 2g'(f3 e2) ' —2tlg(f~ e~)(f3 e3) 3 ],
FH=g ~'[(g'+g')(f, H)'+~'(f, H)']
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In the limit of a small planar mixture, tI « I, g, g —I/J2,
and e3 is the direction of minimum superfluid density,
which we identify as the "texture" axis. From Eq. (3), it
is clear that the superfluid density is not axisymmetric
about e3. Near T„where K~ =K2=K3, we have p,"/p,'"
=(I+2tI )/(I+2( ), p,"/p, =(I+2ti )/(I+2( ). For
the axial state, these ratios are exactly 2, whereas they
are strictly greater than 2 and are pressure dependent

t

for axiplanar states.
It is clear that FG tends to align e3 with v, . FD is mini-

mized when the orbital triad [e;] is completely aligned
with the spin triad jf;]. FH is minimized when f2 is a-
ligned with H. It is straightforward (though tedious) to
show that the laminar configuration (e~, ez, e3) =(f~, f2,
f3) =(x,y, z) is a stationary point of F„, and is locally
stable against any uniform change in the orientations of
the spin and orbital triads in a substantial portion of the
u Hplane (the re-gion in Fig. 2 above the inclined
straight line) [9]. Within this region, we have

A„o; =a[z(&x+it",y) —tixi]„; .

Next, we consider the stability of 2 against nonuni-
form deformations in orientations that only vary along z.
The general form of such a deformation with a single
wave vector can be shown to be [10]

A„;(z) =e' "' "[S(z)A T '(z)]„;,
where 5 and T are spin and orbital rotations of the form

FIG. 1, Relative stability of all possible candidates for He-
A [3,4]. The curves labeled by 0 and 15.4 bars are constraints
on the P coefficients at T, and at the respective pressures, de-
rived from the results of Tang et al. in Ref. [2]. In the "meta-
stable" region (bounded above by the broken line), both axipla-
nar and axial phases are locally stable but have higher energy
than the isotropic Balian-%'erthamer phase. None of the 2-
phase candidates is stable in the "unstable" region.

T(z) =R(z, qz)R(y, e)R(z, —qz),

5(z) =R(z, qz)R(y, cr)R(z, —qz),
R(n, 8) denotes a rotation about axis n by an angle 0.
The angles t. and o are small angles. The rotation T gen-
erates a precession of the orbital triad along z such that
the texture e3 precesses about the z axis with wavelength
2tr/q and an opening angle e. 5 describes a similar pre-
cession for the spin triad.

Since A is a local minimum, the (spatially averaged)
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diA'erence 8F =F„(A)—F„(A ) is quadratic in e and o.
After a straightforward but lengthy calculation, SF can
be written in dimensionless units as

C(q) = —.
' q'[Kt3q'+ K,(2 —q')],

D = I + 2 r)(, E = —(I ——', ri ),
(12)

(13)

Sf= [A (q) e +B(q)co+ C(q) rr ]

+D(t.' —o) +Eh o

A (q ) =
4 w Kt3(1 —3ri ) +qwK t23g

+ 4 q [Kt23+(K2 Kt3)TJ ]

B(q) = qwK—t3rig —,
'

q
—(Kt3+2K2)rig,

(10)

where we have expressed the energies and lengths in units
of the dipole energy (gDA ) and the dipole length [LD
= (K123/3gD ) '"]

~

6f =SF/gob', h =gHH /gD,

w =2muLD/h, , q =qLD, K;—=3KI/Kl23.

Optimizing with respect to o., one finds

Sf= Y(q;w, h)e 4[C(q)+D+ Eh ] [2 (q)+D] —[B(q) —2D]
4[C(q)+D+Eh ]

2 (14)
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F'IG. 2. Region of stability of laminar flow in the w-h plane:
Above the inclined straight line, the laminar flow (et, e2, e3)
=(ft, fz, f&) =(x,y, z) is a stationary point, which is stable (un-
stable) against helical distortion in the region labeled laminar
(helical). Below the straight line, the stationary configuration is

{e;=f ],f2=z, f3=x, ft =y (see Narasimhan and Ho in Ref.
[9]).

Instability towards a helical distortion will result if Sf is

negative. To determine the boundary between the uni-
form and the helical texture (referred to as the laminar
boundary), we note that the numerator of Y is quartic in

q, and is non-negative for all q if all roots of the equation
Y(q) =0 are complex, while the denominator is non-

negative for all q. Instability is signaled when a pair of
(conjugated) complex roots become real as one varies w

and h starting from the laminar side.
Figure 2 shows the axiplanar boundary for a given p3

and a series of P4s. The latter illustrates the eAect of pla-
nar admixture on the "stability loop. " The case P4&=0
corresponds to the axial state. We have found numerical-
ly that the laminar boundary is rather insensitive to p3.
On the other hand, as P4s (i.e. , the planar mixture) in-

creases from zero, the size of the stability loop expands
rapidly. It reaches a maximum size (substantially larger

than that of the axial phase) and then shrinks back, im-

plying that the axiplanar laminar flow is more stable than
that of the axial phase for at least a range of the planar
mixture. This feature is qualitatively consistent with the
experimental observation of Bates et al. [6], which shows

the laminar flow is stable at velocities and magnetic fields

higher than those predicted by the axial interpretation.
However, as we try to fit the data of Ref. [6], we find that
the axiplanar stability loop is still not big enough to
match the data. Rather than speculating on the reasons
for the mismatch, we would like to point out a special
feature of the axiplanar laminar boundary which clearly
distinguishes it from the axial phase. Near T„K)=K2

K3 and hence K; = 1; the functions 2,B,C,D, E in Eq.
(9) depend only on g, g, and ri. Since these coefficients
are pressure dependent, the axiplanar laminar boundary
will vary with pressure. This feature is absent in the axial
state for (, g, and ti are constants. Unfortunately, the
measurements in Ref. [6] were done at diA'erent tempera-
tures (fixed pressure) instead of at diAerent pressures.
We believe repeating these experiments at diAerent pres-

sures will not only produce a clearer distinction between

these two states, but will also enable one to determine the
ratio P4s/Pt, in the event that He-A is axiplanar.

(III) Vortices and vortex nucleation in the axiplanar
state. —The axial state is known to have nonsingular vor-

tices [11]. This is a consequence of its orbital symmetry

group, SO(3). This symmetry also allows a superflow to
be collapsed completely down to zero by textural motions
[12]. In fact, the remarkable periodic textural motions in

He-A in the presence of a heat Aow [13] can be inter-

preted in terms of this collapsing process, with nonsingu-

lar vortices (i.e. , textural variations) being nucleated con-
tinuously to reduce the increasing superfluid velocity gen-
erated by the heat flow [14].

The orbital symmetry group of the axiplanar state is

SO(3)XU(1). The U(1) gauge symmetry only allows

the formation of the ordinary "phase" vortices. It also
imposes a topological stability (of the usual kind) on the

superAow. Because of this stability, even though the axi-
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planar textures can undergo helical distortions to reduce
the flow energy as we have shown in the previous section,
it can never collapse the superflow completely as in the
axial case. At first sight, it appears that the axiplanar
state would have serious difficulty in explaining the heat
flow driven periodic textural motions, which is essentially
a flow collapsing process in repetition. There is, however,
a way that the axiplanar state can escape this topological
stability. In the limit of small planar mixture, it will cost
little energy for the axiplanar state to turn axial in the re-
gions where the flow energy is high, or near the surface of
the container where the order parameter is generally
suppressed. Once turned axial, the system can get rid of
any amount of superflow within the transformed region.
In this way, essentially all major flow properties of the
axial state are preserved. Nonsingular vortices can exist
in the axiplanar state provided that they have an axial
core. These vortices can be nucleated near the surface in

the axial mode [14], evolving into the full axip]anar form
as they emerge into the bulk.

The similarities between the axial and the axiplanar
flow properties certainly make it difficult to distinguish
these states. However, as discussed in the previous sec-
tion, clear distinctions can still be made from the symme-
try of the superfluid density as well as from the pressure
dependence of the laminar phase boundary.
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