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We report computer simulations of the phase behavior of dipolar (ferro) fluids. We consider a
model in which the dispersive interactions can be varied independently from the dipolar (magnetic)
interactions, The simulation results show that a minimum amount of dispersive energy is required
to observe liquid-vapor coexistence. If the dispersive energy is below this threshold, as for example
in the dipolar hard-sphere fluid, the system forms chains of dipoles aligning nose to tail. Our
simulations did not give any evidence that these "polymerlike" systems phase separate into a liquid
and vapor phase.

PACS numbers: 64.70.I x, 64.60.Cn, 75.50.Mm, 82.20,Wt

The seminal work of Alder and Wainwright has shown
that hard-sphere interactions alone are sufficient to ob-
serve a fluid-solid phase transition [1]. For a vapor-liquid
phase transition attractive forces are required to provide
the cohesive energy to stabilize the liquid phase [2]. Since
all common molecular fluids have a liquid phase, it is
tempting to assume that, if attractive forces are present,
vapor-liquid equilibria will always be observed at suFi-
ciently low temperature. This point of view is, however,
too simplistic. For example, experiments on colloidal sus-
pensions have shown that "liquid-vapor" phase coexis-
tence is only observed when the range of the attractive
forces is sufficiently large as compared to the diameter of
the colloidal particles [3]. If the range is too small, the
(metastable) critical temperature is lower than the triple
temperature and hence no vapor-liquid equilibrium is ob-
served.

In this Letter, we consider the eKects of dipolar inter-

actions on the vapor-liquid curve. In particular, we pose
the question whether dipolar interactions are sufficient to
stabilize a liquid phase. Since all polar fluids have a liquid
phase, one might be inclined to assume that the answer
to this question is affirmative. However, in real polar
fluids the dispersive van der Waals forces can never be
ignored and hence we cannot conclude that dipolar forces
alone suffice to stabilize the liquid phase. The efFects of
dipolar interactions can also be investigated in a ferro-
fluid, i.e. , a colloidal suspension of ferromagnetic parti-
cles dispersed in a magnetically passive liquid. Bacri et
al. [4] have shown that these systems have a vapor-liquid
phase transition. Ferrofluids are particularly interesting
since the anisotropic magnetic (dipolar) interactions can
be varied independently from the isotropic dispersive in-
teractions.

To study these systems using computer simulations, we
introduce a model dipolar jferrofluid in which the parti-
cles interact via a pair potential of the following form:

U), „(r~p, , p) =4e
~

—A + —p, p, ——(p, r,, )(p, r,, )
r~sp r

where p, is the dipole moment and p, , is the orientation
of the dipole of particle i, r,~ is the distance between the
particles, and A controls the strength of the dispersive
interactions. Note that we focus on a ferrofluid in zero
magnetic Beld.

It is interesting to consider some limiting cases of this
model. For A = 1, the model is identical to the Stock-
mayer fluid [2] for which the vapor-liquid curve has been
calculated using computer simulations [5,6]. For A = 0,
the model reduces to a dipolar soft-sphere Quid which is
similar to the dipolar hard-sphere fluid. For the dipo-
lar hard-sphere fluid, the existence of a liquid phase also
appears to be well established. Since the orientation-
ally averaged interaction between two dipoles is a van
der Waals —like 1/rs attraction, de Gennes and Pincus
conjectured a vapor-liquid coexistence similar to that of
a conventional van der Waals fluid [7]. Kalikmanov [8]

used this conjecture to estimate the critical point. Also
more sophisticated liquid theories such as mean spherical
approximation [9] and perturbation theory [10] predicted
the occurrence of a vapor-liquid curve. Finally, simula-
tions of Ng et al. [11] lent support to the theoretical pre-
dictions of the existence of liquid-vapor coexistence in a
dipolar hard-sphere fluid.

Since for both lirrlits of our model the existence of a liq-
uid phase appears to be well established, a detailed study
of this model is not expected to reveal new qualitative in-
sights. It turned out, however, that below a certain value
of A no phase coexistence could be observed in our sim-
ulations. For low values of A, the dipoles align nose to
tail and form chains at conditions close to the coexistence
curve.

To determine the vapor-liquid curve of our model as a
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function of A, the Gibbs-ensemble Monte Carlo technique
has been used [12,13]. In the Gibbs-ensemble technique,
simulations of the vapor and liquid phase are carried out
in parallel. Monte Carlo moves which allow for changes in
the volume and number of particles ensure that the two
boxes are in thermodynamic equilibrium with each other.
The coexistence densities can be determined directly
from the two systems. Systems of at least 512 particles
were studied and the long-range dipolar interactions were
handled with the Ewald-summation technique using "tin-
foil" boundaries [14]. Further details on the simulations
can be found in Ref. [6]. The reduced temperature and
density are defined using the dipolar hard-sphere fluid as
a reference, i.e. , T* = k~Tcr /p, and p* = osp The.

parameters are such that for A = 1 the model reduces to
a Stockmayer fluid with p,

*~ = p, /scrs = 4.
In Fig. 1 the phase diagrams for A =1—0.35 are pre-

sented. The lower the value of A the more dificult it be-
comes to exchange particles between the liquid and the
gas phase. Besides the already low probability of find-
ing an empty space, the probability that a randomly ori-
ented dipole has the "correct" orientation to be accepted
turned out to be very small. To enhance the acceptance
of the exchange step, we have used the configurational-
bias Monte Carlo technique to bias the orientation of the
dipole [15). This resulted in an increase of the acceptance
of the exchange step by a factor 3 to 4 depending on the
conditions.
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In Fig. 2 the critical temperature and density are
shown as a function of A. As expected, the critical tem-
perature is lowered due to the decrease of the dispersive
interactions. More surprising is the decrease in the crit-
ical density. The predictions of the various theories and
the simulation results of Ng et at. for the dipolar hard-
sphere fluid are shown as well in Fig. 2. If we extrapo-
late our results to A = 0 [16], we arrive at a much lower
critical temperature and density than predicted by the
theories and simulations of Ng et at. These results are
in line with the recent simulations of Caillol [17]. Cail-
lol performed Gibbs-ensemble and NPT simulations for
the dipolar hard-sphere fluid for T* = 0.18 and 0.22 and
could not detect any vapor-liquid coexistence. Our re-
sults show that if there is a coexistence curve it should
be expected at a much lower temperature and density.

For values of A & 0.3, we could not detect phase coex-
istence using the Gibbs ensemble. At conditions where
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FIG. 1. Vapor-liquid curves of the model dipolar fluids for
various values of A as obtained from the Gibbs-ensemble sim-
ulations. The points are the simulation data; the solid lines
are fits to the simulations (see Ref. [6]). The critical point is
estimated using the methods described in Ref. [6]. The results
for A = 1 correspond to the Stockmayer Auid with p,

* = 2 and
are taken from Ref. [6].
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FIG. 2. Critical temperature (a) and critical density (b) as
a function of A. The arrows indicate the various estimates
of the critical temperatures for the dipolar hard-sphere Quid
(see text). Note that the estimate of Kalikmanov [8] of the
critical temperature (T, = 0.66) does not fit on the scale.
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FIG. 3. Snapshot of the dipolar fluid (A = 0.2, T* = 0.125,
and p' = 0.073). The particles are shown as capped sticks,
with the long axes of the stick parallel to the dipole. The plus
side of the dipole is colored red, the minus side white.

the coexistence curve is expected, we observed the forma-
tion of chains of dipoles aligning nose to tail. A typical
snapshot of such a configuration is shown in Fig. 3. It is
important to note that we did not observe chain forma-
tion in the Gibbs-ensemble simulations of the liquid phase
for A ) 0.3 (see Fig. 4). We also used NPT simulation at
zero pressure starting with a high density liquid. If there
is phase coexistence, these NPT simulations would equi-
librate to a density close to the coexistence density. We
observed that chains already formed at densities higher
than the expected liquid coexistence density. The system
formed a "glassy" structure with chains that percolated.
Because of this percolation most volume changes were
rejected and the density did not further decrease. After
repeated heating, to break up the chains, the simulations
ended in the gas state which suggests that there is no
stable liquid phase.

The results presented in this work suggest that if there
is a vapor-liquid phase transition for the dipolar hard-
sphere fluid, it is at much lower temperatures and densi-
ties than predicted by most theories. Furthermore, con-
trary to what is assumed in most theoretical work on
this subject, we observe that under conditions where a
critical point is expected, the structure of the dipolar
hard-sphere fluid is very diferent from that of a typical
"simple" liquid. In fact, the microscopic structure of the
dipolar hard-sphere fluid resembles that of a polydisperse
mixture of "living" linear polymers and ring polymers.
We did not find any evidence that this system undergoes
a liquid-vapor transition.

The simulations indicate that a minimum amount of
dispersive energy is required to observe a van der Waals-
like vapor-liquid curve. In ferrofluids it is possible to

FIG. 4, Snapshot of liquid coexistence density of the dipo-
lar fluid (A = 0.3, T' = 0.14, and p* = 0.3). See also the
caption to Fig. 3.

prepare colloidal suspensions in which the magnetic in-
teractions can be varied independently from the disper-
sive interactions. With such systems the results of the
simulations may be tested. Furthermore, chain forma-
tion in these colloidal systems may be further investi-
gated. The formation of chains introduce an additional
correlation length in the system which can have a criti-
cal exponent diferent from the Ising-like one. It would
therefore be interesting to further investigate the critical
behavior of these systems at conditions where the perco-
lation of dipoles occurs close to two-phase region. This
work, together with the recent studies of Wei and Patey
[18] and Weis et at. [19j on the formation of liquid crys-
talline phases in simple dipolar fluids, shows that these

systems are much more interesting than expected.
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