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Periodic Focusing and Ponderomotive Stabilization of Sheet Electron Beams
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Particle simulations compare the behavior of nonrelativistic sheet electron beams in uniform static and
nonuniform time-harmonic magnetic fields. The time-harmonic fields are equivalent to periodically
cusped magnetic (PCM) fields. While the sheet beam in a uniform field exhibits diocotron instability,
the PCM-focused beam is stabilized by ponderomotive forces, in agreement with recent analytic predic-
tions [J. Appl. Phys. 73, 4140 (1993)]. Mismatched PCM-focused beams exhibit envelope oscillation
and initially rapid emittance growth followed by a region of slower increase, in agreement with a recent
semianalytic Fokker-Planck model.

PACS numbers: 41.85.Lc, 41.85.3a, 52.30.Bt

Sheet or ribbon electron beams are intrinsically well

suited for use where high beam currents and small
beam-channel clearances are required. Applications in-

clude high-average-power free electron lasers [1],conven-
tional low-voltage microwave tubes [2], and quasioptical
gyrotrons [3]. Other applications may include gas laser
excitation and high-current electron accelerators. The
principal advantage of sheet beams over round cross-
section beams is that by spreading the current out in the
wide transverse dimension, one can propagate high
currents through small beam-channel clearances without
excessive space charge repulsion. The principal disadvan-

tage of sheet beams is their susceptibility to disruption
and filamentation in uniform solenoidal focusing magnet-
ic fields. This behavior arises from EXB drift velocity
shear and is most commonly referred to as "diocotron"
instability.

Ponderomotive stabilization of instabilities is a familiar
concept in plasma physics [4-6] and using ponderomotive
forces to confine round cross-section electron beams is a
familiar concept in accelerator physics [7,8]. As demon-
strated in this. Letter, periodically cusped magnetic
(PCM) fields [2] provide both eA'ective focusing and sta-
bilization of the diocotron instability in nonrelativistic
sheet electron beams.

The ponderomotive force of interest to this work is il-

lustrated by a time-harmonic magnetic field of the form

x = q E„+co„(t)y—co,y(t)uP,
m

y= q
Ey —co„(t)x,

(2a)

(2b)

where co,y(t)= qBy(t)/m, co„—(t)=qB, (t)/m, and we as-

B(y, t ) =Bp sin ( tots t )y +Bp cos (tott t )z .
L

These fields are applied to a sheet electron beam having a
uniform charge density np, a thickness 6 in the y dimen-
sion, infinite width in the x dimension, and uniform veloc-
ity up along the z dimension. The equations of motion in

the transverse (x,y) plane are

x, = ~E„,
m

(3a)

2

Ey xftopz(t) = Ey
q . q ~p ~cp

y, . (3b)
m m 2 mgL

The second term on the right-hand side of Eq. (3b) repre-
sents the ponderomotive stabilizing force that survives the
fast-time average. This is the force that both focuses and
provides stability to the sheet beam. Proceeding as in

Ref. [9], we investigate the stability of Eqs. (3) to low-

frequency quasistatic perturbations of the form
—e' "' . The quasistatic assumption combined with
assuming a thin beam (i.e. , kB«1) leads to space charge
electric terms of the form E = —(m/2q)coykBX, and

Ey = (m/2q) to~khy„where co~
= npq /m—sp is the conven-

tional beam plasma frequency. Substituting these expres-
sions into Eqs. (3) results in normal mode solutions for
the low-frequency perturbations that satisfy the relation

i/2
O)cp

Q)
2

Qp

cogL
(4a)

i.e., bounded, harmonic oscillation. This is in marked
contrast to the result of a similar calculation [2,9] for a
sheet beam in a uniform static magnetic field B =Bpz,

cozk6'
CO= +i (4b)

2cocp

sume that perturbations to the velocity along z are negli-
gible, i.e., z = up. We proceed to solve Eq. (2) using a
multiple-time-scale approach, assuming that we can
separate fluctuating quantities into linear sums of fast
and slow time scale responses, e.g, x(t) =xf(t)+x (t),
y(t) =yf(t)+y, (t), etc. The magnetic field terms (oscil-
lating with frequency toit) are assumed to be varying rap-
idly, while the electric field terms associated with beam
space charge fluctuations are considered to be slowly
varying. Assuming that up)) ~y~ and equating fast-time-
scale terms yield xf = (co py /tottL)upcos(to8t) to sim-
plest order, where co,p=—qBp/m. Inserting this approxi-
mate solution back into Eqs. (2) and averaging over the
fast-time motion yield
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FIG. 1. Horizontal charge density distribution p(x) with ini-
tial "square" density bunch used to initiate the diocotron insta-
bility simulation. x(mm)
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a purely growing perturbation.
In this Letter, we report the results of numerical

particle-in-cell (PIC) simulations that demonstrate this
ponderomotive stabilization of diocotron instability in

sheet electron beams. Although the simulations used the
time-varying fields above, their relevance to focusing in a
static, spatially periodic PCM field (such as discussed in

Ref. [2]) is easily established by using the transforma-
tions co~ k uo, uot z, and L ' k, where k
—:2tr/l~ and l represents the spatial period of a spatially
periodic magnet array.

The first simulation results illustrate the evolution of
diocotron instability in a sheet electron beam immersed in

a uniform solenoidal magnetic field. The initial condi-
tions for this run included a 0.07 T uniform magnetic
field (in the z direction), un=5. 9&&10 m/s (correspond-
ing to a 10 keV beam energy), and a beam thickness of
2.0 mm. The left- and right-hand boundaries represent
symmetry planes and are spaced a distance of 10.0 mm

apart. The upper and lower boundaries represent con-
ducting planes, each spaced a distance 10 mm from the
midplane (y=0 plane) of the simulation cell. The beam
charge density is uniform in the vertical (y) dimension.
To "seed" the instability, a charge "bunch" was placed in

the middle of the beam using the distribution illustrated
in Fig. 1. For the ensuing diocotron instability simulation
of Fig. 2, pm, „=3.3&&10 C/m, pm, „/p;„=1.6, and the
bunch width was set equal to the beam thickness, i.e.,
h, =6'. The meaning of these parameters is defined in Fig.
1.

The evolution of the unstable beam in configuration
space is shown in Fig. 2. The vortex formation driven by
the Exa velocity shear is clearly visible. By the end of
the run (elapsed simulation time of 10 ns), filamentation
is evident, as the beam has started to collect in the middle
of the simulation cell and has "pulled away" from the left
and right boundaries. From the simplified formula in Eq.
(4b), an estimate of the diocotron e-folding time of ap-
proximately 0.5 ns is obtained —in qualitative agreement
with the simulation.

E
8 ' "

. ~gag

—18
x(mm)

I

x(mm)

Results obtained by repeating the above simulation
with the periodic ("PCM-like" ) fields of Eq. (1) are
presented in Fig. 3. For this example, the beam initial
conditions were identical to those of Fig. 2. The peak
magnetic field B0=0.07 T, for comparison with the uni-
form field results of Fig. 2. The magnetic field fluctua-
tion frequency mz was chosen to correspond to a PCM
spatial period of l = 5 mm using the relations discussed
above. There are three distinct features of this particular
simulation case. First, the diocotron instability and
filamentation observed in Fig. 2 is absent, confirming the
analytic prediction. Second, the beam thickness fluctu-
ates or "breathes" in time. This results from a pondero-
motive force that initially exceeds the beam space charge
forces. The efrect is easily illustrated by resolving Eq.
(3b)—this time for the beam envelope, y, (t), of an ini-
tially laminar, uniform (in x and y) density beam. After
some algebraic manipulations, the result is [10]

y, (t) =y, (0) ' — ', cos(ntt t )
Ag Qp

(5)

an oscillatory solution, where Qa uptu p/2tuttL, tulip
——is

FIG. 2. Evolution of a diocotron instability for a sheet elec-
tron beam with an initial density bunch immersed in a uniform
axial magnetic field of magnitude Bo. The magnetic field axis
points into the page. The initial conditions were 80=0.07 T,
p,„=3.3& 10 C/m, p,„/p;„=1.6, 5 =6=2.0 mrn, and
u0=5.9&&10 m/s, and the horizontal width of the simulation
frame is 10.0 mm. (a) t =0.0 ns, (b) t =0.5 ns, (c) t =1.4 ns,
(d) t =2.8 ns, (e) t =4.6 ns, and (f) t =11.5 ns.
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FIG. 4. Simulated evolution of emittance growth with time
for ponderomotively focused sheet electron beams. The mag-
netic field parameters were the same as in Fig. 3. The beams
were initiated as laminar, uniform density beams of thickness
2.0 mm. The solid curve displaying larger emittance growth
corresponds to an initially underdense beam with p(0)
=2.1X10 3 C/m . The lower dashed curve corresponds to an

initially nearly matched beam with p(0) =3.6&&10 3 C/m3.

FIG. 3. Simulation demonstrating stabilization of diocotron
instability by ponderomotive focusing with rapidly oscillating
magnetic fields. Initial conditions for the electron beam were
the same as those for Fig. 2. Parameters for the time-harmonic
magnetic field included a peak amplitude 80=0.07 T, a mag-
netic fluctuation frequency mz =1.0X10" s ', and a transverse
gradient scale length of L ' =1.7 mm '. (a) t =0 ns, (b)
t =0.5 ns, (c) t =0.7 ns, (d) t =1.2 ns, (e) t =1.8 ns, and (f)
t =12.4 ns.

the initial beam plasma frequency as the beam enters the
focusing channel (at t =0), and y, (0) is the initial beam
envelope (beam half thickness at t =0). From Eq. (5) it
is evident that if the beam enters "underdense" (i.e. ,

top ( Ott), then the beam is compressed inwards, and the
envelope oscillates with a maximum amplitude of y, (0),
in agreement with Fig. 3. Finally, a significant beam
"heating" or transverse emittance growth is evident from
the trajectory mixing and the slight halo production of
Fig. 3. This kinetic effect (not included in the simplified
fiuid model) has two sources: the bulk beam mismatch
(co~ ( Qtt) that gives rise to the beam envelope oscilla-
tions and the exaggerated magnitude of the initial density
bunch (pm, „/pm;„= 1.6) that was chosen to accelerate the
onset of diocotron instability conditions. The second
source of emittance growth is not expected to be present
in a realistic, well-formed sheet beam but the first eA'ect

is certainly a realistic issue [11].
In Fig. 4, we plot the evolution of rms transverse emit-

tance [12] s~ =[(y )(y ) —(yy) ]'/ versus time for two
initially uniform, laminar sheet beams confined by the
periodic magnetic fields of Eq. (1). The initial beam

charge densities (for these two cases) of 2. 1X 10 C/m
and 3.6&&10 C/m correspond to an underdense and a
nearly matched beam (co~ = Qtt), respectively. The im-

portance of beam matching to minimize emittance
growth is clearly illustrated in Fig. 4. For short PCM
periods, where the period-averaged analysis presented
here applies, the effective focusing force is linear [see Eq.
(3b)], and the emittance growth exhibited in Fig. 4 is

analogous to the well-known result for mismatched cylin-
drical beams [11,13]. In the case of the mismatched
beam (solid trace), two regimes of emittance growth are
evident, an initial, rapid growth phase lasting up to ap-
proximately 3 ns followed by a second phase of slowly in-

creasing emittance. These results are in qualitative
agreement with a semianalytic Fokker-Planck model for
emittance growth of sheet beams in linear focusing chan-
nels [14]. The emittance growth for the nearly matched
beam in Fig. 4 (dashed trace) is dramatically lower, as

expected. Future quantitative studies of this emittance
growth in ponderomotively focused sheet electron beams
will provide proper estimates for phenomenological trans-

port coe%cients used in the semianalytic Fokker-Planck
model.

In summary, results of numerical PIC code simulations
have been presented, supporting the analytic prediction
that rapidly oscillating magnetic fields can ponderomo-
tively stabilize sheet electron beams against diocotron dis-

ruption. This technique can be experimentally realized
with periodically cusped magnetic fields for nonrelativis-
tic beams [2] and either cusped or wiggler [1] fields for
relativistic sheet electron beams. In addition to stabiliza-
tion, ponderomotive focusing of sheet beams must also
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consider matched beam conditions to avoid unacceptably
high emittance growth. Simulations comparing matched
and unmatched beams illustrate this point in a dramatic
fashion. In particular, the simulated emittance growth of
an initially unmatched beam displays qualitative agree-
ment with a phenomenological semianalytic Fokker-
Planck model that predicts an initial phase of rapid emit-
tance growth followed by a second phase of slower in-
crease.

The numerical simulation results reported in this
Letter were obtained using the Mission Research
Corporation's MAGIC code under the AFOSR-sponsored
MAGIC User's Group. The authors acknowledge consid-
erable assistance by Dr. L. Ludeking and Dr. D. Smithe
in operating the code. Appreciation is also expressed to
the University of Wisconsin Engineering College s
Computer-Aided-Engineering center for assistance and
facilities during training sessions for use of the code. Fi-
nally, we acknowledge the University of Wisconsin Col-
lege of Engineering for the purchase of the computer
workstation on which these simulations were performed.
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