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Singular Behavior of Shear Flow Far from Equilibrium
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A rare exact solution to the nonlinear Boltzmann equation describing rheological phenomena
far from equilibrium is reconsidered. We show the existence of a critical shear rate beyond which
the solution fails to exist. The implication of this exact result is a singular transition from simple
uniform shear How to a more complex state, perhaps involving spatial ordering.

PACS numbers: 47.50.+d, 05.20.Dd, 05.60.+w, 51.10.+y

From a theoretical point of view, complex nonlinear
transport and rheological properties of Huids remain out-
side the scope of controlled analysis in general. The single
exception is a low density gas described by the nonlin-
ear Boltzmann equation for a state of uniform shear How

(i.e. , flow in the z direction with constant velocity field
gradient or shear rate, a, in the y direction). This is one
of the few inhomogeneous states for which exact results
can be obtained far from equilibrium, arid therefore is
of great significance in providing insight for the type of
phenomena that can occur under extreme state condi-
tions. Almost forty years ago Ikenberry and Truesdell
[1] observed that the infinite hierarchy of coupled equa-
tions for velocity moments of the distribution function
decouple for the special case of uniform shear How and
Maxwell molecules (r potential). Moments of any de-
gree are then determined by a finite set of coupled equa-
tions, providing a constructive procedure to characterize
a solution to the Boltzmann equation. The components
of the stress tensor determine the rheology for states far
from equilibrium, and are characterized by three scalar
functions: a shear rate dependent viscosity rl(a) and two
viscometric functions Qi(a) and $2(a) associated with
normal stresses. The equations for these functions are
solvable for all values of the shear rate [1,2], and provide
a rare exact description of nonlinear transport outside
the Navier-Stokes domain [3].

The fact that the second degree moments are well be-
haved at all shear rates has led to the implicit assumption
that this is true for all moments. Indeed, this property
extends to the third degree rnornents as well [4]. Our pri-
mary observation here is that a strict limitation on the
shear rate appears in the steady state solution to the mo-
ment equations of fourth degree. We find solutions for
a ( a„no solutions for a = a„and unphysical solutions
for c & e, . We conclude that the Ikenberry-Truesdell
solution describes a uniform shear How steady state only
if the shear rate is less than the critical value a, . Above
the critical shear rate, the assumed form of the distri-

bution function for uniform shear flow [Eq. (2) below]
no longer reaches a steady state. Instead a more com-
plex steady state is expected, presumably involving new
spatial structures. As this result is exact, there can be
no doubt that a transition from uniform shear How to
some qualitatively difI'erent state occurs. What happens
as this critical value is approached from below' We of-
fer suggestions below for further theoretical analysis and
stress feasibility of numerical studies using either molec-
ular dynamics or Monte Carlo direct simulation methods
for the Boltzmann equation.

The nonlinear Boltzmann equation has the general
form

+V m 'F, , =J
where F, t is an external force whose form is chosen be-
low and J[f,f] is the collision operator. The distribution
function, f(r, v, t), for uniform shear flow has the form

where g = v —U(r) and U (r) =—ay, U„(r) = U, (r) = 0
are the components of the macroscopic velocity field rep-
resenting How in the x direction with constant gradient
a along the y axis. For large t, it is expected that this
distribution function approaches a quasistationary state,
f(g, t) + f, ((,T(t)), where the temperature, T(t), is a
spatially homogeneous function of time determined from
the average kinetic energy, 2k~T(t) = 2(m( ). This is
an example of a "normal" solution, whose space and time
dependence occurs entirely through the hydrodynamic
fields. It is easily verified from normalization and the
first velocity moments that this specific form of the distri-
bution function describes an average velocity field U(r)
and constant (in both space and time) density n More.
generally, when defined in terms of the peculiar velocity
g, all moments are spatially uniforin hence the name
"uniform" shear How. In the absence of any external
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(~4 + ~v)(, ) f = ~jffl, ,

(0 cI
(3)

where a,~
= ab, ~bz&. In this equation we have taken

into account that initial conditions of the form f($, 0)
map into solutions f (g, t); i.e. , no additional space depen-
dence is generated. Furthermore, we are interested in so-

force there is viscous heating and T(t) increases mono-
tonically. To simplify the discussion here, we include a
nonconservative external force (thermostat) chosen to re-
move this heating eKect. The exact equivalence between
the Ikenberry- Truesdell solutions with and without ther-
mostat has been discussed elsewhere I5]. For Maxwell
molecules, the quasistationary solution without thermo-
stat corresponds to the stationary solution with thermo-
stat. The external force is taken to be F,„q/m = —n(',
and the constant o, is determined as a function of the
shear rate by the condition T(t —+ oo) =const.

The Boltzmann equation for uniform shear How be-
cornes

lutions that approach a stationary state, f(g, t) ~ f, (g)
To explore this possibility we study the corresponding
properties for the moments of the distribution function.
Equations for the moments of f are obtained by mul-

tiplying (3) by polynomials in ((,); the precise choice
of polynomials is a matter of convenience. The primary
observation of Ref. I1] is that the infinite hierarchy of ve-
locity moments obtained from the nonlinear Boltzrnann
equation for Maxwell molecules is formally solvable in
this case. The reason is twofold: First, for the special
case of Maxwell molecules the contributions from the
collision operator for a moment of given degree depend
only on moments up to that degree; second, contribu-
tions from the convective terms of the Boltzmann equa-
tion also involve only moments of the given degree as a
consequence of the uniformity of the distribution func-
tion. In this way a constructive procedure to determine
all moments is identified. As no approximations are re-
quired, the moments obtained are exact consequences of
Eq. (3). To illustrate, the moment equations of second
degree, M~~ = ((,(~), are found to be

0 1

Bt
—+ 2o; M,z (t) + a, i, Mk~ (t) + a&~M~, (t) = — dg (,(z JIf, f]n

= —v M,~ (t) —
s b,~ MgA, (t) (4)

where the explicit form of JIf, f] for Maxwell molecules
has been used in the second equality and v is a constant
proportional to n and depending on the parameters of
the potential. An equation for the temperature, T(t) =
mMpj, (t) /3k ~, follows from (4),

~

—+ 2n
~
T(t) + a,~M,~(t) = 0 .

(0 l 2m

(Bt ) 3kgg
"

The thermostat parameter o, is now determined by the
condition that the temperature approach a constant,

m
a(a) = — a,,M,, (oo) .

3kIBT oo

Equations (4) and (6), together with given initial con-
ditions, completely determine the moments of degree 2.
Their solution is straightforward and will not be given
here, other than to note that n(a) is the real root of
va2 = 3n(v+ 2n)2.

It is instructive to write Eq. (4) in a matrix form,

8—z (t) + L pxp(t) = T(t)b

x::(M, Myy, M„, M y, M „Mv, t,

where L p and 6 are constant matrices identified from
(4). The formal solution to (7) is

x(t) = e-"z(0) + d~e T(t —7.)b .

A necessary condition for the existence of the steady state
is that the real parts of the eigenvalues of L be positive
definite. There is a single sixfold degenerate eigenvalue,
A(a) = 2n(a) + v. Since n(a) is positive for all values
of the shear rate, the eigenvalue is positive as well. The
steady state uniform shear How second degree moments
are then 2:(oo) = (L ~b)T(oo).

This approach extends to the analysis of moments of
higher degree as well. There are ten independent mo-

ments of third degree that obey a linear first order equa-
tion similar to (7). It is found that the eigenvalues of the
corresponding linear matrix are again positive for all val-
ues of the shear rate and the moments go to zero for long
times [6]. In the following we focus on the analysis of the
moments of degree 4. There are fifteen independent mo-
ments, which decouple into two subsets of six and nine
moments, respectively. The moments in the first subset
tend to zero in the long time limit I6]. The remaining
nine moments define a column matrix

: (((') (('(&.' ——.' (')) (&'((„' ——.'&')) ((.' ——'.('((.' ——'.&')) ((„' —-', &'((„' ——'.&'))

(&.
' —7&'(&' —g'()&')) (('&*4) (&*4(&.' —7&')) (&*4(&,

' —p&'))) . (10)

The linear equation for y(t) determined from (3) is
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—+&
I W(~) = B(t)

(0
(Ot

with the formal solution

d~e B(t —~) . (12)

Here B (t) is a matrix depending on moments of lower degree, now known,
'

ppn which a roaches a constant value for
( ) — ( ) = 4 ( ) + -v c (a) = 4a(a) + 2.097v. Then the elements of the constantlarge t De. fine c&(a) =—4a(a) + sv, cz(a) = A(a) sv cs a

matrix 2 are given by

ci
0

0
0

0
0

—a7
15
0

C2

0 C2

-a2
7
15—a49

6——a49

0
-a9
7

6——a49—a15
49

0 0

0 0
C3

0
0

15——a14
—a3
7

0
0
0
0

C3

0

15——a14—a10
7

0
0
0
0
0

C3

—a15
14

3—-a7

4a
32—a21

10——a21
96 a245
96 a245

24
245

C2

0 0

0 2a
—a 016
7
0 —a12

7
12 12—a —a7 7
0 0

0 c3 0
0 0 c3

(13)

There are nine different eigenvalues of 2, with three sets
of complex conjugate pairs. Figure 1 shows the six real
parts of these eigenvalues as a function of the shear rate.
The eigenvalue denoted by /&(a) decreases to zero at the
critical value a, 5.178v. This implies that all moments
approach Bnite steady state values as t ~ oo for aa„
y(oo) = 2 iB(oo). Conversely, all fourth degree mo-
ments grow without bound as t —+ oo for a & a, . As an

4illustration, Fig. 2 shows the steady state value of (( )
relative to its Maxwell-Boltzmann value for a ( a„ indi-
cating a divergence as a approaches a, . For a ) a, there
are in principle two possibilities: (1) stationary solutions
to Eq. (3) exist, but moments of degree 4 or higher di-
verge; (2) stationary solutions to (3) do not exist. In the
first case we would expect to discover the divergent mo-
ments from the stationary solution y(oo) = 2 B(oo).
However, the elements of both 2 and B(oo) remain finite
for a ) a instead of divergent moments the solutionsC)

~ 4to this equation are unphysical (e.g. , (( ) ( 0). Thus we
conclude that stationary uniform shear flow is limited to
a (a, .

What is the nature of the solution of the Boltzmann
equation (1) for a ) a, ? The most interesting possibil-
ity is that a stationary normal solution still exists, but
whose space dependence is not as simple as that assumed
for uniform shear fiow. As a normal solution, this space
dependence would be determined entirely by the hydro-
dynamic fields. The transition from uniform shear flow to
this new solution would be associated with an instability
of the shear flow hydrodynamics, as determined by small
spatial perturbations, at a certain shear rate smaller than
or equal to a, . Above that shear rate a different stable
hydrodynamic solution would exist, characterizing the
new normal solution to the Boltzmann equation. The
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FIG. 1. Shear rate dependence of the real parts of the
eigenvalues l (a) of the matrix Z. The solid (dashed) hnes
correspond to the real (complex) eigenvalues. The arrow in-
dicates the location of the critical shear rate a, .

instability of the second degree moments to spatial per-
turbations is reflected in the moments of higher degree
for the uniform state. A possible precurser of new spa-
tial structure may be the increasing anisotropy of these
fourth degree moments as a —+ a, . For instance, ((4) is
about 50 times larger than ((„)and 80 times larger than
((,). The value of a, determined from the fourth de-
gree moments is only an upper bound for this transition
between normal solutions, since it is possible that solu-
tions to higher degree moment equations have stronger
restrictions.

Resolution of these questions from the theoretical side
might be accomplished from a linear stability analysis
of (3), extended to include small spatial variations rel-
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T T I I I I 1 is also due to a hydrodynamic instability [14], although
liquid structure plays an essential role in the origin of
these instabilities at short wavelengths. The Boltzmann
equation is limited to longer wavelengths and thus is not
directly applicable, even if density effects could be scaled.
However, it is possible that a remnant of this transition
remains at low density although presumably at higher
shear rates (this is the spirit of the low density calcula-
tion by Loose and Hess [7]).
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FIG. 2. Shear rate dependence of the steady state value
of the moment (( ) relative to its Maxwell-Boltzmann value

(( )p. The arrow indicates the location of the critical shear
rate a, .

ative to uniform shear flow. This stability analysis can
be transformed to a more practical form via the corre-
sponding moment equations for spatially inhomogeneous
solutions. A related analysis of a possible long wave-
length hydrodynamics instability for uniform shear How,
based on approximate moment equations for the Boltz-
mann equation, has been given by Loose and Hess [7].
Using a rheological equation of state from simulations
they indeed find an instability; however, use of the corre-
sponding equation of state from the Boltzmann equation
solution does not lead to an instability. A more accurate
stability analysis based on the inhomogeneous Boltzmann
equation is required before any firm correlation between
the moment divergence and a hydrodynamic instability
can be claimed.

Complementary numerical studies are both practical
and potentially more illuminating. Molecular dynamics
simulation at low density for comparison with Boltzmann
equation predictions already has been applied to this
problem, although at lower shear rates [8]. A more direct
numerical construction of the solution to the Boltzmann
equation is possible using the Monte Carlo simulation
method of Bird [9]. This is a method suited to states far
from equilibrium and whose accuracy is well established.
It has been applied recently to shear How for comparison
with the shear rate dependence of the viscosity calcu-
lated from the Ikenberry-Truesdell solution, with good
agreement [10]. Since the predicted value of the critical
shear rate discussed here is precise, there should be no
difficulty in locating the singularity by these numerical
methods.

Finally, we note that a transition from uniform shear
How to an ordered state at large shear rates has been ob-
served in molecular dynamics simulations for dense Huids
[ll]. The simulations for simple atomic potentials (hard
spheres, Lennard- Jones) show an ordering of the particles
into strings, hexagonally packed, and directed along the
flow [7,12,13]. It has been suggested that this transition
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