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Spectral Exponents of Enstrophy Cascade in Stationary Two-Dimensional Homogeneous Turbulence
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Direct numerical simulations with up to 4096 resolution are performed to address the question of
universality of statistical properties of the enstrophy cascade in homogeneous two-dimensional tur-
bulence driven by large-scale Gaussian white-in-time noise. Data with diAerent Reynolds numbers are
compared with each other. The energy spectrum is found to be very close to I/k . It is shown that the
primary contribution to the enstrophy transfer function comes from wave-number triads with one small

leg and two long ones, corresponding to wave numbers in the inertial range.

PACS numbers: 47.27.—i, 61.20.Ja

Recently Polyakov [I] suggested to apply the methods
of con formal field theory to the problem of two-
dimensional turbulence and predicted that the energy
spectrum for the enstrophy cascade might have anoma-
lous scaling quite diA'erent from the log '/ k/k law pro-
posed by Kraichnan [2]. Alternatively, Falkovich and
Lebedev [3] attempted to construct a rigorous theory out
of Kraichnan's idea [4] that enstrophy cascade is analo-
gous to distortion of a passive scalar field (vorticity) by a
large-scale straining field. The experimental predictions
for the energy spectrum seems to be even more controver-
sial. The majority of works in the field have concentrated
on the case of decaying turbulence. The results of those
experiments depend strongly on the initial conditions of
the decay [5]. In the transient period of decay it is possi-
ble to observe the energy spectrum I/k [6], but the spec-
tral exponent changes in time. The emergence of strong
coherent vortices [7] makes any prediction even more
diScult. Stationary two-dimensional turbulence was ex-
plored in Ref. [8] (256 ), [9] (512 ), and [10] (1024 ).
In [9] and [10] the significant deviation from a I/O spec-
trum was found. The I/k law was observed in [8] when

all coherent vortices were destroyed by strong infrared

hyperviscosity. We report large-scale computer simula-
tions that explore Reynolds number dependences of sta-
tionary homogeneous two-dimensional turbulence with

the resolution up to 4096 .
The simulated equation has the form

Bgcu+ B» I/fByco By(//B»cu

=( —I)"+'v;a "ru+( —I )'"+'v„W""ru+F,

where ]4tf is the stream function, the vorticity m =h, y, and

the velocity v; =s~/Bj. y. The right-hand side of (I) con-
tains a white noise in time Gaussian force which is

nonzero only at some characteristic scale kf..

(F(k, r)F(k', r'))-~(k' —kj)~(k+k')a(r —r'), (2)

and two artificial dissipative terms designed to provide an

energy sink at large scales and an enstrophy sink at small

scales. Enstrophy is defined as half the squared vorticity.
We performed two series of simulations: first with normal
vlscoslty p„= I, and then with hypervlscoslty p„=8 (pa-
rameters are given in Table I). For the energy sink at
small k we used a hyperviscosity with p; =8. The pseu-

dospectral parallel code described in [11] was used. The

TABLE I. Enstrophy cascade parameters: JV, resolution; kf, scale of the force; k;, k„, in-

frared and ultraviolet cutoffs; kd =(t)/v') '; Re„=k„/kf, Reynolds number; Sr, time step;
r,dd„= 2x/co, „large eddies turnover time; r„= (g) '; T«„ total time of integration.

Normal viscosity Hyperviscosity

Parameters
Ã

kf
kd

k„
k;

Reu
6t

t eddy

Ttot

Al
512

4-6
28
13
1.8
4.7

3x10
11
6.3
300

A2
1024

40
16
2

7. 1

1x10
10.3
6.3
120

A'3

2048

4-6
135
43
1.7
51

5x 10
8

5.5
80

Labels
JV4

4096

4-6
214
59
2

97
2x10

7
5.5
30

H1
512

200
1.8

1100
2x10

6
5

2000

H2
1024

4-6 4-6
Not applicable
390 740
1.5 2

4200 15 200
8x10 5x10

5.3 5.7
5 4.6

300 100

H4
1024

12-14

365
1.8

680
4x10

3.3
2.4
100
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FIG. 3. The log-log plots of energy spectra E(k)k /g ~ (a)
as a function of log~o(k/kf); (b) as a function of log~o(k/k„, d);
solid lines, hyperviscosity, dotted lines, normal viscosity.

have enough inertial range to find out corrections to the
Kraichnan law in the "deep" inertia1 range. For the nor-
mal viscosity case the behavior near kf is practically the
same as in the case of hyperviscosity. However, near the
ultraviolet cutoA' kd „ the energy spectrum behaves quite
diAerently for the diAerent viscosity types. It is hard to
tell whether this near-dissipation range correction will be
a universal property of the system, or it is an artifact of
the specific form of the hyperviscosity. Although we can-
not completely rule out the possibility of anomalous di-
mensions, for the given setup they should be very small.

The mechanism of the enstrophy transfer is one of the
most important characteristics of the cascade. We will

demonstrate that enstrophy transfer is very nonlocal in

wave-number space. We measured the enstrophy transfer
function averaged over angles:

Z(k, q) =„&(Ik'I —k —q)&(~p'~ —k) TH(k', p', q')

xd k'd p'd q'. (6)

The simplest way to measure the function of two vari-
ables Z(k, q) is to pick a uniform sequence of k and mea-
sure the transfer function at k+q coming only from
small q. The results of the time averaging for Z(k, q) are
plotted in Fig. 4. The centers of the spikes in Fig. 4(a)
correspond to the chosen sequence of k, and the spikes
themselves give the dependence of Z(k, q) on q, where q
is the deviation from the centers of spikes. It was
checked that the form of individual spikes in Z(k, q) is

practically independent of k, except in the dissipation
range. The individual spikes as a function of q are plot-
ted in Figs. 4(b) and 4(c). It may be seen that Z(k, q)

falls oA' very rapidly, practically exponentially. Nearly
all the contributions to the transfer function come from q
smaller than the scale of the force kf, i.e., from wave
numbers not belonging to the enstrophy cascade inertial
range. The function Z(k, q) is an odd function of q. The
total transfer TH(k) (4) is equal to TH(k) =fZ(k, q)dq,
since TH (k) =0 in the inertial range. For a fast decaying
Z(k, q) it may be shown that the total enstrophy Ilux
JH(k) may be represented as

Jz(k) = g", dk', Z(k', q)dq . (7)

We have confirmed (7) numerically. The fact that
Z(k, q) is approximately an odd function of q means that
the influence of two large k on a small one is negligible.
If TH(k, p, q) is nonzero in the inertial range, the time re-
versibility is broken. The result that T~(k,p, q) =0
when all k,p, q lay in the inertial range may confirm the
conjecture that turbulence may be time reversible in the
inertial range, and the arro~ of time is set by wave num-
bers not belonging to the inertial range himself, the "in-
frared leakage" of time symmetry according to Polyakov
[I]. The similar results for the enstrophy transfer func-
tion were reported for smaller resolutions in [12,13].

The direct way to check the consistency of diA'erent
theories would be to measure higher order vorticity corre-
lators directly in Fourier space. Unfortunately, the Auc-
tuations of these correlation functions are so strong in

comparison with their averages that this goal is very hard
to accomplish. We tried to measure some higher order

k, r

FIG. 4. (a) Enstrophy transfer function Z(k, q)/q, measured
at k =64, 12g, . . . as a function of k/k„ for the H3 run; (b) one
of the spikes of Z(k, q) as a function of q; (c) the same spikes
in log scale; (d) kfhco hv/2g, dashed line is the Kolmogorov law
for this quantity.
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F!G. 5. Fluxes and spectra for higher powers of' co(x)" for
n =2, 3 (02 run): (a) Auxes J„are normalized by
r!(co )" '(2n —

I )!!, for n =2, 3; (b) log-log plot of spectra
(kco, (k)co„(—k)), which are normalized by il (co )" '(2n
—1)!!,where co„(k) is the Fourier transform of co(r)", for n
=-2 3 dashed line —I/k '

moments in physical space, such as vorticity diAerences
[co(r) —co(0)]". First we checked the Kolmogorov-type
relation for the velocity-vorticity third order correlator
[c) co(r)] hv„(r) =2qr„, which is a direct consequence of
the Navier-Stokes equation. The results [see Fig. 4(d)]
are consi. stent with the prediction up to kIr ~ 1. Unfor-
tunately, the vorticity diAerences mostly come from the
region of spectrum very close to the force k = ky, and
give little useful information about the inertial range.

Apart from the enstrophy there are also higher con-
served integrals of the type I„=Jco "(r)d r. For these
quantities it is possible to define corresponding Auxes J„
in complete analogy with the Aux of vorticity (4).
Whether we have constant or zero cruxes of I„ is unclear a
priori. The measurements of J„, along with the spectra
of the Fourier transforms of the powers of vorticity co(r)"
for n =2, 3 are shown in Figs. 5(a) and 5(b), respectively.
We indeed have the ranges of constant cruxes for these
quantities. As may be expected for a Gaussian force, the
absolute values of these Auxes scale as i7(co )" '(2n —1)!!
Within the range of constant Aux, the spectra of m" are
very close to 1/k, as may be expected from "scalar field"
type theories.

The main conclusion of this work is that the spectral
exponent of the energy spectrum is quite close to —3. In
contrast to the results here, other calculations for forced
stationary homogeneous turbulence performed so far
[9,10] yielded diA'erent anomalous dimensions. We think

that one of the reasons for this discrepancy are the small
Reynolds numbers in those simulations. We explicitly
demonstrated how energy spectrum evolves toward 1/k 3

when we increase Re„, keeping Re; fixed. We should em-
phasize that unlike [8] we have both direct enstrophy and
inverse energy cascades. The analysis of our vorticity
fields shows that we usually have 4-6 large coherent vor-
tex structures for runs H 1-H3 and around 10 vortices in

the H4 case, where we have the largest infrared range
(kf = 14). Therefore inAuence of vortices on direct en-
strophy cascade decreases, while we increase direct cas-
cade range. The data for the H4 run deviate from the
Kraichnan law the most strongly, but the Reynolds num-
ber in this case is also the smallest, We may expect that
the H4 run also will change it scaling toward 1/k after
increasing Re, . We cannot completely rule out the possi-
bility that even for infinite Re„ the increase of the inverse
cascade range may lead to anomalous dimensions in the
enstrophy cascade range, but it seems unlikely at this
point.
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