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The static as well as the dynamic behavior of granular material are determined by dynamic
and static friction. There are well known methods to include static friction in molecular dynamics
simulations using scarcely understood forces. We propose an ansatz based on the geometrical shape
of nonspherical particles which does not involve an explicit expression for static friction. It is shown
that the simulations based on this model are close to experimental results.
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The behavior of fluidized dry granular material, like
sand or powder, reveals a rich variety of effects which can-
not be observed in other substances. Those effects have
been observed and investigated by many scientists over a
long period [1-5]. Examples for the most interesting ef-
fects are fluidization, convection cells and heap formation
under vibration [2,6-8], size segregation (“Brazil-nut” ef-
fect) [9-11], deformation under shear force [12], shape
segregation of differently shaped grains in a pipe [13], and
clustering instabilities [14]. Density waves emitted from
outlets [15] inside material flowing through pipes [16]
and at the surface of an inclined chute [17] have been
intensively investigated. Of particular interest are the
dynamic as well as the static behavior of avalanches go-
ing down the slope of a sandpile. Theoretical as well as
experimental investigations [18-22] led to the hypothe-
sis that their mass and their time distributions can be
described by the self-organized criticality model. There
are experiments, however, that do not agree with this
hypothesis [6,23]. Recently many experimental obser-
vations have been reproduced by numerical simulations.
There is a wide variety of simulation methods includ-
ing Monte Carlo simulations (e.g., [10]), molecular dy-
namics simulations (e.g., [4,9,13]), and random walk ap-
proaches [24]. These simulations gave much interesting
information on the microscopic effects underlying the
behavior of macroscopic amounts of granular material.
Many of the effects observed in experiments are conse-
quences of static friction between the grains. In most of
the current simulations special terms for static friction
are used to mimic static behavior of granular material,
e.g., [4,25]. The aim of this paper is to show that it is pos-
sible to reproduce the experimental results by molecular
dynamics simulations without introducing such a static
friction force but by simulating nonspherical particles.
We show that our simulations with nonspherical parti-
cles agree better with experimental results than equiv-
alent simulations introducing static friction forces as is
usually done.

Since it is extremely complicated to calculate collisions
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of cubic particles, we choose in two dimensions particles
similar to squares but consisting of spheres. A further
advantage of this model is that we are able to vary the
shape steadily from a sphere almost to a square. A re-
lated ansatz for nonspherical grains was recently done by
Gallas and Sokotowski [26]; there each grain consists of
two spheres rigidly glued to each other. Each of our non-
spherical particles k consists of four spheres with equal
radii rgk), located at the edges of a square of size LK)
and one sphere with radius r$¥ = L® /v/2 — r{*) in the
middle of the square (Fig. 1). For the case where two
spheres ¢ and j with masses m; and m; of the same par-
ticle k or of different particles touch each other during a
collision, there acts the force

F§ = [Y(ri + 75 — |xi = x5]) — ymes|i — *j|}H7

i J

where Y is the Young modulus, v is the phenomeno-
logical friction coefficient, and meg is the effective mass
Meff = ;nT—n—ngg In addition to the forces between every
two particles of the system, there are forces between each
pair of spheres 1, 7 where 7 and j both belong to the same
grain, due to a damped spring,

FIG. 1. Shape of a nonspherical particle.
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where a and 7ysp are the spring constant and the damping
coefficient. If the spheres ¢ and j are both located at the
same edge of the square then C*) equals LX*) if i is the
central sphere then C*) = L(¥) /\/2, The interaction be-
tween different grains is purely geometrical without any
intergrain friction.

The dynamics of large numbers of such nonspherical
particles was investigated simulating the flow of gran-
ular material in a rotating cylinder under gravity. For
the integration we used a sixth order predictor-corrector
method [27]. In a cylinder of diameter D = 260 mm
we simulated the flow of 1000 nonspherical particles of
different size L(*®) with Gaussian probability distribution
p(L™®) = N(3,1) with mean value L*) = 3 mm, each
consisting of five spheres. For the parameters we chose
Y = 10* kg/s?, v = 1.5 x 10* 57}, o = 10* kg/s?,
vop = 3 x 10* 571, and 7¥) = LL®). The chosen pa-
rameters are typical for a soft granular material. The
cylinder consists of spheres with different radii to mimic
a rough surface. The mean value of these spheres equals
the mean value of the L(®¥). The cylinder was rotated
clockwise with very low uniform angular velocity 2. The
time evolution of the slope © of the surface as well as
the averaged velocity ¥ of the particles at the surface
for a fixed angular velocity Q = 0.002 s~! are drawn in
Fig. 2 [curves v(a), ©(a)]. The angle was plotted in rad,
¥ in 50 s~1. Since the number of particles is not too
large, our surfaces are not smooth. Hence we have to
determine the inclination indirectly as the angle between
the straight line connecting the center of mass point of
the grains and the middle point of the rotating cylin-
der and the direction of gravity. The angle and particu-
larly the average velocity of the surface particles fluctu-
ate drastically and irregularly as is typical for stick-slip
motion. This behavior was observed experimentally be-
fore by Briscoe, Pope, and Adams (28] and by Rajchen-
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FIG. 2. Time evolution of the slope © of the surface and
the averaged velocity ¥ of the particles at the surface of the
flow for nonspherical (a) and spherical (b) grains.
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bach [29]. The plots v(b),©(b) in the same figure show
the equivalent data for the simulation using spherical par-
ticles. The radii of the spheres were Gauss distributed
too with p(r;) = NJ[1,1]. The spherical grains undergo
the same force as the spheres of which the nonspherical
particles consist. To mimic static friction we include for
the case of spherical particles rotation as a further degree
of freedom of the grains and add the force

. 0 __1 o Bk
Fg = mln{—%meﬂ|vrel|’M|FS|} (1 0 ) z ]

xi — %,
with

Viel = (X; — Xj) + 1w, + W5,

where w, is the angular velocity of the ith particle, v,
is the shear friction coefficient, and u is the Coulomb
parameter (ys = 3 x 10% s™!, 4 = 0.5). This ansatz
is the most popular to include static friction between
particles which roll on each other [4,9]. The force F§i was
implemented only for the simulation of spherical grains
but not for the nonspherical.

Obviously the qualitative behavior of the slope © in
both simulations resembles each other but quantitatively
we get for nonspherical grains more than twice the mean
angle (©,s) than for spherical (©4,). For very low rota-
tion velocity Q@ = 2 x 1073 57! we found ©g, = 7° and
©,s = 19°. In the experiment [29] © ~ 27° was mea-
sured. The average velocity of the surface grains differs
significantly too for both cases. The typical avalanches
in the case of nonspherical particles cannot be observed
for spheres. The curve ©(b) is much smoother. In the
experiment one observes stick-slip motion [29]. Figure
3 shows the slope © of the surface as a function of the
angular velocity of the cylinder © for both nonspherical
and spherical grains. In both cases the curves are close to
a straight line. For much higher angular velocities than
used in our simulations the grains do not move stick slip
like but continuously. In this regime, Q ~ (0 —0.)!, with
I = 0.5+0.1, was found experimentally [29]. With the
same ansatz we find | = 1.25 for the stick-slip regime. As
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FIG. 3. The inclination © of the surface as a function of
the angular velocity Q of the cylinder.
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FIG. 4. Total mass of a pile of nonspherical grains on a
platform of finite length P = 820.

shown above the simulation with nonspherical grains co-
incides much better with the experimental observations
than with equivalent simulations using spheres.

In our second simulation we investigate the evolution
of a stable pile of granular material by continuously drop-
ping particles on the top of the pile due to the experiment
of Held et al. [20]. Beginning with an empty rough plane
we drop the next particle when the maximum velocity
vanishes, vmax < 1. The rough plane was simulated
by a chain of fixed spheres of random radii with mean
7 = L. The parameters of the simulation were the
same as in the previous experiment.

During the simulation we noticed that the slope of a
pile of nonspherical grains does not depend on the num-
ber of particles. For spherical grains, however, the heap
dissolves under gravity with increasing particle number.
There are molecular dynamics simulations of stable piles
with spherical grains, e.g., [25], but there the particles
are not allowed to roll on each other, hence they can only
slide; this behavior does not correspond to experimental
reality.

If the platform above which the heap is built up has a
finite length P one can investigate the fluctuations of the
mass mp of a heap of definite size and the distribution
of the size of the avalanches, i.e., the mass fluctuations
of the heap. In Fig. 4 the time series of the mass my, is
drawn for fixed P. The mass fluctuates irregularly due to
avalanches of different size going down the surface of the
heap. The size distribution of the avalanches follows a
power law; Fig. 5 shows the spectrum. For the exponent
h(Na) ~ (N4)" we found | ~ —1.4. The experiments
yield | =& —2.5 [20] and | &~ —2.134 [21]. For the case of
spherical grains we cannot find avalanches.

The ratio between the size of a grain and the radii of
the spheres at the corners determines whether the grains
shape is closer to a sphere or to a square. Hence we de-
fine a shape value S =1 — RS, /RS, ., where RS and

max? min

RS, are the extremal values of the distance between
the convex cover of the nonspherical grain and its cen-

tral point (Fig. 6). For the limit S — 0 the grains have
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100} ™.

10{

1L
0.001

FIG. 5. Size distribution of the avalanches. The line dis-
plays the function h(Na) = (Na)~ 14,

the shape of spheres. The function reaches its maximum
Sm = 0.255 for a grain whose convex cover is most similar
to that of a square. In order to ensure that the mass of a
grain is independent of S we scale its density p due to its
shape. Figure 6 shows the angle of the heap as a function
of the shape S. For grains with shape S = S,,, which
corresponds to (L®) /r*))g = 9.66, the inclination of
the heap reaches a maximum too. The angle & ~ 23.1°
agrees with experimental data; Bretz et al. [21] found
® = 25°. Each other value of S corresponds to two dif-
ferent particle shapes, both closer to a sphere than the
S particle. The values marked by ® are due to grains
with L") /r® < (L®) /r®))g |+ designates the slope
of the heap for particles with L®) /r®) > (L& jr®)yg
As expected the slope @ of the heap rises with growing
L*k / rgk) until S reaches its maximum S,,. For larger ra-

tio L(k)/”rgk) (S < Sm) the slope @ decreases. The dashed
line in Fig. 6 displays the inclination ®,, we measured for
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FIG. 6. Slope ® of a heap over the shape value
S for grains with L(k)/rik) < (L(k)/rgk))sm (®) and
L(’“)/rl(.k) > (L(k)/rfk))sm (+). The dotted line leads the eye
to the function ® = 130S + const. The dashed line displays
the inclination observed in simulation with spherical particles.
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a heap of spheres, which corresponds to S — 0. &, gives
a lower boundary for the slope. The observed ® values
for S € (0, Sy,) lie between @, and &(Sp,).

The simulations described above demonstrate that
nonspherical grains are able to describe the static be-
havior of granular materials. It is shown that equivalent
simulations with spherical grains and an additional term
which describes the static friction due to the Coulomb
law could reproduce the experimental results neither for
stick-slip motion nor for the angle of repose of a sandpile.
The angle of repose reaches its extremal value for grains
whose shape is close to a square.

Hence we conclude that our microscopic model of non-
spherical grains supplies a possible description of the
static behavior of a granular material. The results re-
garding nonsphericity agree well with those in [26].

The authors thank J. A. C. Gallas and H. J. Herrmann
for stimulating and enlightening discussions.
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