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Oscillatory Exchange Coupling: RKKY or Quantum-Well Mechanism?
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The exchange coupling in multilayers of iron and chromium is calculated in the local spin density
approximation, as a function of the Fe magnetic moment. We find a short-period and a long-
period oscillation, which we attribute to a harmonic of the short period. For small moments, the
interlayer coupling is found to be bilinear in the Fe moments, as assumed in RKKY theory. For
moments appropriate to real iron the coupling tends to saturate, as assumed in quantum-well models,
demonstrating that the quantum-well model more correctly describes the real iron-chromium system,
though both models give correct periods of the oscillation.

PACS numbers: 75.50.Rr, 73.20.Dx, 75.30.Et

An exchange coupling between ferromagnetic layers,
separated by a nonmagnetic metal layer, has been ob-
served by a number of workers [1-4]. It was found, in fact,
that this coupling oscillates as a function of the thick-
ness of the intervening layer [5-8] with a period which is
consistent with the Friedel-like oscillations [9] associated
with the RKKY interaction [10]. For a multilayer geom-
etry, this interaction takes the form sin(kz)/z?, with z
the spacing between ferromagnetic (FM) layers and k a
nesting vector at the Fermi surface. Remarkably enough,
this same functional dependence is also consistent with a
model in which quantum-well states are formed for a fer-
romagnetic alignment of the magnetic layers where, for
example, all majority-spin bands lie below the Fermi en-
ergy and thus electrons of this spin at the Fermi energy
are confined to the nonmagnetic layer [11]. Indeed, such
quantum-well states have been observed in Fe/Ag by in-
verse photoemission [12]. In this case, the confinement
arises from a gap in the minority-spin bands, as can be
seen from the band structure of iron. The periods are the
same because both depend directly upon the dimensions
of the Fermi surface of the nonmagnetic material. This
raises the question as to which of the models more ap-
propriately describes the coupling. It cannot be decided
on the basis of the periods alone since both predict the
same periods. It is this question which we address here.

It must certainly be true that if the coupling between
the magnetic moments in the magnetic materials and
the conduction electrons in the combined system is weak
enough, this coupling can be treated in second-order per-
turbation theory. This is exactly what is called RKKY
coupling—it is oscillatory and bilinear in the magnetic
moments on the two sides. If now the magnetization
on each side becomes so strong that either the majority
or the minority bands are shifted away from the Fermi
energy Er, quantum-well states will form near Er. Con-
finement of these states gives rise to a term in the energy
difference between the parallel alignment and antiparallel

alignment, which is independent of the magnitude of the
splitting of the bands and of the moment [13]. Thus, as
the magnetic moments are smoothly increased from zero,
the interlayer coupling will initially be proportional to the
square of the moments, and second-order RKKY theory
applies. Eventually quantum wells may form, and the in-
terlayer coupling will saturate, becoming independent of
the size of the moments. The system will shift smoothly
between the two regimes, but we can distinguish which
model is valid by noting the dependence upon moment.
Although both models yield the same oscillatory behav-
ior, the origin of the coupling in the two cases is fun-
damentally distinct. In RKKY, one spin polarizes the
surrounding medium, while the other interacts with this
polarization. In the quantum-well model, states are ex-
pelled from the Fe, and the confinement causes a dis-
cretization of states, which become more closely spaced
with increasing spacer thickness. These give rise to an
oscillatory dependence on the band structure energy as
new states move below Er. The effect resembles the de
Haas—van Alphen effect in that only states at Er enter
[14]. The magnetic character of the magnetic layers plays
no role in the quantum-well model except to provide two
different shapes of quantum well, depending on the rela-
tive alignment of the magnetic layers.

Consider in particular the bands of nonmagnetic Cr
and of FM Fe, all shown in Fig. 1. The minority-spin
bands in Fe are similar to those in Cr, but shifted up
slightly, with the Az, Ay, and As bands all crossing
the Fermi energy . Thus for [001] multilayers, coupling is
strong between minority-spin Fe and Cr bands. However,
for the majority-spin bands of Fe, all three of those bands
lie almost entirely below Ep. States of these symmetries
are largely confined to the Cr, and quantum-well states
formed when Fe slabs are ferromagnetically aligned.

Superlattices of [001] Fe/Cr offer an excellent test to
distinguish the RKKY and quantum-well pictures. It
was demonstrated previously [15] that, for nonmagnetic
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FIG. 1. Energy bands along [001] in Cr and Fe. First
panel: bands of nonmagnetic Cr. Second and third panels:
minority and majority bands of ferromagnetic Fe.

Cr, density-functional calculations yield oscillatory de-
pendence of the exchange coupling E, on the spacer
thickness. The calculated variation of E, with the num-
ber of Cr monolayers m was very well described by an
RKKY form with two periods:

2

Eg(m) =Y A;sin(g;m + ¢;)/m”. (1)

j=1

The periods 27 /q; were determined by a least-squares fit
to be 2.15 and 12.3 ML (monolayers), respectively, with
the long-period amplitude about 5 times smaller than the
short period. The short period is easily identified with
the well-known nesting vector that gives rise to antifer-
romagnetism in Cr; these are marked “S” in Fig. 2. The
long period is strikingly close to the value of 18 A Parkin
observed on [110] Fe/Cr [16], and also seen in the [001]
whisker experiments [17] at high temperature. In this
regard the calculated results are consistent with either
the RKKY or quantum-well models. We can, however,
distinguish the two models by observing the dependence
of coupling strength on Fe moment.

To make such a study, we adopt a non-self-consistent
procedure, which exploits the fact that self-consistent
multilayer charge density deviates from bulk behavior
only close to the interface. We approximate the self-
consistent density by a suitably chosen trial density which
is exact well away from the interface, and make use of
the variational principle which states that errors in the
total energy are second order in deviations from the self-
consistent density. As discussed in Ref. [15], such trial
densities, when combined with the Harris-Foulkes func-
tional [18], are sufficient for a good description of the
exchange coupling in Fe/Cr. As discussed in Ref. [15],
we also add an additional step to the input potential
across the interface, whose magnitude is determined vari-
ationally. This compensates for the missing dipole at the
interface which must arise to align the bulk Fe and Cr
Fermi levels.

A non-self-consistent approach is essential here, be-
cause a self-consistent calculation of necessity yields only

FIG. 2. Fermi surface of nonmagnetic Cr. Long vectors
(“S”) mark the large parallel sheets that give rise to 2.15 ML
oscillatory coupling. The short vector (“L”) has a length
appropriate to the 12.3 ML period.

a single density (and thus moment and coupling) for a
given structure. We wish to obtain E, as a continuous
function of the Fe moment. Also in the special case of
Fe/Cr, Cr manifests characteristics of an antiferromag-
netic (AFM) spin-density wave; self-consistent solutions
reflect this fact, as Ref. [15] discusses in detail. When Cr
is antiferromagnetic, E, does not exhibit the form Eq. (1)
we seek here, but is dominated by the energetics intrinsic
to the magnetic properties of antiferromagnetic bulk Cr,
as modified by the presence of Fe at the boundary.

These calculations employ the atomic spheres approxi-
mation (ASA), which represents a crystal charge density
by a superposition of overlapping, spherical, and atom-
centered densities that fill space. The “combined cor-
rection” term, which accounts for a proper treatment
of the muffin-tin potential in the interstitial region is
included, and the usual basis of s, p, and d orbitals
was employed. Integrations over the Brillouin zone are
made with the linear tetrahedron method augmented
with Blochl weights [19], using a mesh of 48x48x4 di-
visions in the Brillouin zone. This was sufficient to con-
verge E, to about 2 uRy. A single average lattice con-
stant of a = 2.87 A was taken.

The trial density is constructed from the charge den-

sity of self-consistently calculated bulk nonmagnetic Cr
in the Cr-centered spheres; in the Fe-centered spheres, a
suitable average of bulk nonmagnetic Fe and ferromag-
netic Fe was employed. Defining n° as the density of bulk
nonmagnetic Fe, and nt and n~ as the spin densities of
the majority and minority spins in ferromagnetic Fe, the
density in the Fe spheres was taken to be
nt(r) —n~(r)
e (2)
The Fe moment is proportional to «, reaching 2.28up
corresponding to the density of bulk Fe at a=1. As stated
earlier, the dependence of the A; [Eq. (1)] on « enables
us to distinguish the RKKY and quantum well limits.

As a preliminary test of this relation between coupling
and moments we constructed a 54-atom chromium lat-

nre(r) = no(r) £
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tice with two iron atoms substituted, each separated by
3 times the bcc nearest-neighbor distance, 3 x \/§a/2.
The 54-atom supercell consists of a 3ax3a cube with one
iron at the origin and the other at 3a(111)/2. The energy
difference between inequivalent Fe atoms aligned parallel
and antiparallel was then obtained as a function of the
Fe moment, parametrized by «. In the context of RKKY
theory, this energy difference is a superposition of the ex-
change interaction between all Fe pairs in the crystal, and
varies as o2. As Fig. 3 illustrates, the energy difference
between ferromagnetic and antiferromagnetic alignment
of the iron moments increases in proportion to . The
system is behaving just as would follow from RKKY the-
ory, even up to the moment appropriate to real iron. (For
a = 1, there is a slight deviation, which is to be expected
since RKKY coupling is obtained in second-order pertur-
bation theory and valid only for small moments.)

We then constructed multilayer [001] superlattices of
the type Fe;Cr,,FeaCr,,, and calculated the energy dif-
ference E, = E[Fe)Cr,,FeiCr,,] - E[FelCr,,FelCr,,] as
a function of a. For each «, the amplitudes A; were de-
termined by fitting £, with the functional form Eq. (1).
In this way, we determined the coupling strengths for
both the short (A;) and long (A2) periods independently
as a function of Fe moment, as Fig. 3 illustrates. For
small «, the couplings of both short and long periods in-
crease as o2, as expected. At larger o both couplings
show evidence of saturating, with the long period satu-
rating completely. The deviation from the o? line defi-
nitely indicates a breakdown of the RKKY theory near
the observed iron moment. To the extent that the cou-
plings saturate, one can say that the quantum-well theory
applies. However, the tendency of the short-period am-
plitude to continue its rise at large o indicates that the
behavior is not as simple as the quantum-well picture
with complete confinement would suggest.
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FIG. 3. Exchange coupling as a function of normalized Fe
moment a. a=1 corresponds to bulk Fe, or 2.28up. Ali cou-
plings are scaled to unity at a=0.2. Straight line, o®; squares,
E, of the 54-atom supercell; dark circles, short-period ampli-
tude; light circles, long-period amplitude.
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A closer look at the band structure of chromium in-
dicates why this might be so. Let us consider the short
period first. We showed earlier that quantum wells can
arise when the spacer encounters gaps at the boundary,
and that such gaps are present along the I'-H line (Fig. 1)
because states of different symmetry do not couple. All
the bands shown in Fig. 1 have wave vectors exactly nor-
mal to the interface. But it is evident from Fig. 2 that
the vectors responsible for the short period span a large
portion of the Brillouin zone. Electrons with transverse
components to their wave numbers have mixed symmetry
and are no longer decoupled. Confinement is complete
only for normal wave vectors (and possibly wave vec-
tors at other high-symmetry points); elsewhere the quan-
tum well becomes “permeable.” Thus, the quantum-well
model is only approximate, states being confined to a
greater or lesser degree throughout the Brillouin zone. It
would be erroneous, however, to attribute the quantum-
well part of the coupling to states with small transverse
wave vector and the RKKY coupling elsewhere. As the
“S” nesting vector in Fig. 2 approaches the I'-H line,
corresponding to normal incidence, we may see by com-
parison with the bands of Fig. 2 that one end approaches
Ao symmetry and the other As symmetry. They cannot
belong to the same quantum-well states at that point
and thus do not contribute to the observed oscillatory
period. For the same reason, they do not contribute to
an RKKY coupling. The coupling arises from the large,
approximately planar, Fermi surfaces of the electron sur-
face centered at I' and the hole surface centered at H, a
projection of which is shown in Fig. 2.

What is the origin of the long period coupling? The
only nesting vector that seems to approximately match
the 12.3 ML period is that marked “L” in Fig. 2 [20]. This
vector is unlikely to be responsible for the 12.3 ML pe-
riod for several reasons. The phase space associated with
that nesting vector is small; moreover, it connects states
of different symmetry. This reduces coupling strength
and in the RKKY description the envelope function falls
off faster than the usual 1/m2. To check this possibility,
we attempted to fit the calculated coupling using a 1/m*
envelope for the long period. The fit was significantly
worse than with a fit with a 1/m? envelope, and was es-
sentially no better than a fit using a single, short period.
There do not seem to be any other nesting vectors of the
appropriate length, particularly ones that connect states
of the same symmetry.

The 12.3 ML period would, however, seem to match
quite well a “Vernier” period of the first harmonic of the
short-period oscillation. A free-electron description of
the quantum-well limit shows that the oscillatory cou-
pling is not strictly harmonic, but has a sawtoothed
shape [21]. Our own unpublished tight-binding calcula-
tion agrees with this. To the extent that a quantum-well
description is valid, higher harmonics should be present
which add terms of the form m™2sin(2rnm/T + phase),
with T the fundamental period and n = 2,3,... . Ex-
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pressing the 2.15 ML period T} as 1/Ty = 1/2+6/2w, the
lowest (n=2) harmonic becomes m~2sin(26m + phase).
This “Vernier” period has ezxactly the same form as
Eq. (1), with an effective period Th = 27 /26 = T1/(2 —
T1). (A “Vernier” period—sometimes called “aliasing”—
describes beats that arise when a simple harmonic func-
tion is sampled on a slightly incommensurate mesh. That
is the origin of this term, except here it arises from the
n = 2 harmonic of the short period.) Using the calculated
value of 2.15 ML for the short period, we obtain an effec-
tive interaction with a period T, = 2.15/0.15 = 14.3 ML.
This value is slightly larger than the fit value of 12.3 ML,
which would correspond by a short-period nesting vector
of 2.177 ML, or about 1% larger than 2.15 ML. The dis-
crepancy cannot be attributed entirely to uncertainties
in the fit by Eq. (1), as the uncertainty is ~0.01 ML for
the short period and ~0.5 ML for the long. However, the
2.15 ML period is actually some weighted average of the
“8” vectors in Fig. 2, which fluctuate by about 3% be-
cause the planes bow slightly [20]. The higher harmonic
arises from a different weighted average, so that the effec-
tive “average” vector corresponding to the Vernier period
may differ by something less than 3%.

Why does the long period completely saturate? We
noted that higher harmonics are present in the quantum-
well limit. Corresponding higher-order terms do not oc-
cur in the same form in RKKY theory; in that case all
of the higher-order terms depend in the same way on
the coupling strength, and take the form sin(27rm/T +
phase) /m?2+integer That is, the corrections to Eq. (1) al-
ter the envelope rather than the oscillatory part [21]. A
Vernier period is thus a signature of the quantum-well
description. The long period saturates completely be-
cause it originates from the quantum-well character of
the 2.15 ML interaction; the RKKY character does not
contribute.

To summarize, we see in a consistent way how the short
period in FeCr makes a partial transition to a quantum-
well character from an RKKY description at small mo-
ments. The transition is partial because of the incom-
plete confinement of states in Cr, and manifests itself
as an incomplete saturation of the interaction with Fe
moment. The origin of the long-period interaction also
emerges naturally from this picture, as a manifestation of
higher harmonics stemming from the quantum-well char-
acter of the interaction. The first harmonic appears as
an effective interaction with a period of approximately
12 ML, matching well with the period actually observed.
Its saturation with Fe moment offers further evidence of
a quantum-well description of the exchange coupling.
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