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Rapidly Convergent Bond Order Expansion for Atomistic Simulations
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An O(N) and rapidly convergent method for calculating the bond order potential and forces
for the atomistic simulation of covalent systems is described. A derivation of a novel many-atom
expansion, which allows the Green's functions not only to handle the symmetry problem correctly
but also to retrieve equivalence between the site-diagonal and intersite descriptions for the bond
energy, is given. The convergence of the bond orders and bond energies is demonstrated for d-valent
transition metals.
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Atomistic simulation is regarded as a powerful ap-
proach to understanding structural properties and pro-
cesses of condensed matter. In order to deal with very
large, low symmetry and covalently bonded systems, the
central problem has been to develop efficient, real space, -

and accurate methods for calculations of binding energy
and interatomic forces. Recently, several groups have
proposed O(N) methods [1—3], in which the number of
arithmetic operations grows linearly with system size X,
to bring very large systems within our reach.

It is well known that the Lanczos tight binding re-
cursion method (LTBRM) [4,5] is a real-space, efficient
O(K) method, which represents the site-diagonal (SD)
Green's functions G in continued fraction form, and
also the intersite (IS) Green's functions GI directly
from the difference, 2(GI+ I+ —GI ), between
the continued fractions associated with bonding and an-
tibonding orbitals. The LTBRM maps the problem of the
local electronic structure about a given orbital onto the
semi-infinite recursion chain model with diagonal (a„)
and subdiagonal (b„) coefficient. In practice, these are
often approximated from some level by repeating con-
stants (a and b ) for an infinite number of levels, so
that the continued fraction is terminated.

However, this approximation at any level causes prob-
lems which are serious enough to have discouraged people
from applying LTBRM to the calculation of energy and
forces for atomistic simulations. The most drastic effects
are the following: (i) Disastrously poor convergence [6]
of the bond energy calculated by the IS approach as a
function of exact recursion levels, in contrast with rapid
convergence of SD approach; hence (ii) the breakdoton of
equivalence between SD and IS approaches. This failure
of the IS approach meant that the bond orders and the
Hellmann-Feynman (HF) expression for the forces (see,
e.g. , [7] and references therein) could not be used; in
both approaches there is a "symmetry difficulty" [8] re-
sulting in (iii) the breakdoian of invariance of energy and
forces under a rotation of quantization axis for degener-
ate atomic orbitals.

The standard remedy for problem (iii) is the so-called
matrix recursion method (MRM) [8,9], in which the chain
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FIG, 1. TB bond energy differences for bcc, hcp, and fcc
structures (solid and dashed lines for bcc-fcc and hcp-fcc, re-
spectively). W is nominal bandwidth of the canonical d-band
model (see, e.g. , Refs. [6,7]). From left to right the three pan-
els show the results by the IS-MRM {retaining exact moments
to the sixth moment), by the SD-MRM (to the fifth moment),
and by the k-space method (exact), respectively.

coeKcients are matrices instead of scalars. However, it
is clear from the examples shown in Fig. 1 that even the
IS-MRM cannot get rid of the poor convergence, whereas
the SD-MRM converges well. Therefore, problem (ii) re-
rnains the most important,

The many-atom expansion for the IS Creen's function
and the bond order, first derived perturbatively [10], was
further developed [ll] and then proved to be exact [12].
But again, the truncated expansion suKered from con-
vergence as poor as that given by the IS-LTBRM. The
rotational invariance was preserved, in a somewhat re-
stricted manner, by choosing a local axis along the bond
direction, and by introducing two-dimensional auxiliary
vector spaces with n and 6' bond orbitals [12].

Very recently, the importance of the sum rule which fol-
lows from the identity (F H) G = 1 h—as been pointed out
and its power has been demonstrated for simple s-valent
equivalent-site systems [13,14]: It was shown within the
fourth moment approximation that the bond order ex-
pansion could give the same bond energy as that given
by the SD method, by choosing the terminator (b ) so
as to satisfy the sum rule. But, the previously derived
many-atom expansion has been (iv) unable to fulfill the
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where E~ is the Fermi level, E't is the dr (—:2E+ 1)-fold
degenerate atomic energy level on atom i, and n't is the
8-projected local density of states per spin.

In the IS description, the contributions come from in-
dividual bonds about the atom as

sum rule for att energies E, for any system and at any
level of approximation. In this Letter, I derive a general-
ized many-atom expansion for the IS Green's functions,
which solves problems (i)—(iv) simultaneously for the first
time.

Within the two-center orthogonal tight binding (TB)
approximation, the covalent bond energy is written in the
SD description as Ubo„g = Q, t Ub „~ with

GA (~A IGI~A ) ) ) Gr I ', ALA

iL jL'

We then find for jL' g iL the following expression:
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which exists if IA, L„,r, l
+ IA I, i, I

& 0 [15].
Goo may be written as a continued fraction since the

Lanczos method [4] can naturally be carried out in OCRA
to generate the chain coeKcients a„and b„and the or-
thonormal recursion basis m~ such that

HI~A~ I~A ~bA +
I

A) A +
I

A ~bA

with bo = 0. From Eq. (7) we find the exact expansion
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where H' 'i = (P' IHlqP ) are matrix elements of the
TB Hamiltonian H and P'+ are atomic orbitals with the
usual convention I for the angular momentum indices
Em. The orbital bond order, i.e. , the off-diagonal element
of the density matrix, is given by

+).2Go -iG.o (9)

since OGoo/Oa„= GoA„GAo and BGoo/BbA = 2GoA„r G~o
[16],where Go„are Green's functions along the recursion
chain, namely, Go„——(ufo IGlui„" j.

Equation (9) can be further simplified in terms of the
L' Lmoments pA and interference matrices (~+r' defined by

with the Green's functions defined as the elements,
G~~ '~ = (P~~ IGlqP~), of the Greenian G = (E —H)

The key to improving the convergence in the IS method
is to ensure the equivalence of the bond energies found

by the SD and IS methods, Eqs. (1) and (2), which can
be maintained only if the sum rule

and
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It follows that
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with G' = d& Q G' " is fulfilled for any arbitrary
energy E. How this can be accomplished is now shown.

Consider an auxiliary Hilbert space A spanned by a
set of orthonormal vectors (e,L, j, in which the elements
have a one-to-one correspondence with the orthonormal
atomic orbitals (P' E 0), and define vectors as e~L

P&L„e&L, AA;L, ,L, with an arbitrary matrix A. We then
define a normalized vector in the direct product space
OgA as

l~o) = ) .I@')Ie'i)

with the condition (rU& lui&) = tr[A] = 1, where the
elements of matrix A are defined by scalar products
Azr. , iL, = (e L, le, r) in A. For any linear operator act-
ing on 0, including the Greenian, we see

ggA

~j L',iL

2n
n pjL', iL
A ~r+j.

rtt
(13)

The expansion Eq. (9) with Eqs. (12) and (13) is valid
for a choice A,L,L ——AjL jL ——

2 with all other elements
~ I

zero for given a pair of orbitals P'+ and P~~, which leads
to the exact many-atom expansion derived previously in
Ref. [12], where GoA were defined in terms of average
moments p„= z(p, '„+p~ ).

However, this choice does not guarantee that the sum
rule is fulfilled and that the rotational invariance is pre-
served. Instead, the sum rule and rotational invariance
are guaranteed by the choice A = A' with A&L„ I,L„——
d& bg ~by~ g with all the ofI'-diagonal elements zero, with
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which we obtain the expansion for the IS Green's func-
tions propagating from or to the E-component orbitals at
atom i. The recursion chain with this choice corresponds
to the rotationally invariant 8-projected local density of
states on atom i, and thus Go„——Gp„, a„= a'„~, and
bA = b'„~ are defined in terms of rotationally invariant
E-projected moments p„= p, '„. The right-hand sides of
Eqs. (12) and (13) become

&~+1
~jL','Lg,g &r+1

r=1 r

(15)

where the reference atom is indicated with the underline.
Using the relation

(jgi)
HiLj L'~j L' iL iE FiE iE=P +1 — P,

m, j,L
(16)

and the moments-recursion coefficients relationship [see,
e.g. , Eqs. (2.10)—(15) in Ref. [11]],we obtain

(i7)

(pic )2 (pic)2 and B'~ —= (a'~ —a'~ )6'~

Using this with Eq. (9) simplifies the right-hand side of
Eq. (4) as

).Go G OA +) Go iG oB—
Using the recursive relation of Green's function along the
reference chain,

( a )Go ~ Go —i b +lGo +i = ~o, , (19)
we see almost all the terms in (18) cancel, leaving only
the term b1 Go1. This exactly equals the left-hand side
of Eq. (4) from Eq. (19) with n = 0. We have, thus,
proved that the expansion Eq. (9) with A = A'r fulfills
the sum rule Eq. (4) at any level of approximation for the
coefficients a' s, 6's, a' s, and P's as long as the relation
Eq. (17) is not violated.

If we wish to make a Mth moment model, which re-
tains exact moments to the Mth order, then we may
terminate the continued fraction, Gpp by approximating
a„'+1 ——a„'+2 —— . ——a' and bq+1

——bq+2
—— . ——b~iE iE

with p = [(M —1)/2] and q = [M/2] ([x] is the greatest
integer which does not exceed x). Then, the series (18)
is truncated because A„'~ = 0 for n ) q and B„'~ = 0 for
n )p+ 1. The simplest way to truncate Eq. (9) with the
constraints given by Eq. (17) is to approximate the last
two coefIicients with truncators:

o-" '-"(&F) = —2 ).Xo' o(&F)~'
n=p

@+1

+ ).Xo —i, o(@F)2&
n=l

(21)

where the response functions are defined by
Eg

G~~„(E+ i0)G'„,o(E + i0)dE.Xo'...O(&F) =

(22)

In the Mth moment model, the bond energy given by the
IS description, Eq. (2), simplifies to a new, rapidly con-
vergent moment expansion for the bond energy, namely,

@+1

Ubo„g ———2dz ) &on, no+n + ) &on —i noBn . (23)

This is equivalent to that given by the SD description,
Eq. (1), for any order M. Note that the bond order
contributes to the total bond energy and the HF forces

'L' 'L ~ I

in a symmetric form, i.e. , 2(O~ -'L+0~ ' ).
Figure 2 shows the bond energy which is given by the

present model for M = 4, 6, and 18. The bond orders in
the fcc structure for the same number of exact moments
are displayed in Fig. 3. The convergence of the energy
and bond orders is impressively rapid.

For a low-order moment model in the present scheme,
however, there remains a finite, but small discrepancy
between the HF and numerical forces. For example, the
HF and numerical forces acting between two neighbor-
ing atoms in a half-filled s-valent infinite linear chain
agree within errors of 3x10 sFO and 6xl0 'po in the
fourth and sixth moment models, respectively, with no
discernible discrepancy in the eighth moment model. For
the "surface" atom of a semi-infinite linear chain, the dis-
crepancy between the forces is slightly worse, being 0.9'%%uo
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I'IG. 2. Convergence of TB bond energy differences with
the present fourth, sixth, and eighteenth moment models.
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With this approximation, the bond order expansion is
truncated as
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FIG. 3. Convergence of cr, a, and 6 bond orders between
the nearest neighbors in d-bonded fcc lattice.

in the sixth moment model. However, if we include the
strongly distance-dependent repulsive forces, such a small
discrepancy will lead to a very small error in the relaxed
atomic positions.

Computations can be performed fast. The integra-
tions to evaluate the response functions, Eq. (22), and
also the number of electrons are carried out using semi-

'L
analytical expressions [17]. p, '„s and (~+&" can be ob-
tained efficiently from scalar products among power vec-
tors [H P' ) for each orbital. Moreover, computations
may be highly parallelized as the power vectors can be
generated independently for individual atoms. Local
charge neutrality (LCN) [7] is achieved easily by shift-

ing atomic energy levels, at each step of simulation, by
AE' = —rl(p& draco oo) AN' with appropriate damp-

ing factor rl, where 6¹is the number of electrons to be
added in order to achieve LCN at atom i.

In conclusion, an efficient, O(N), real-space and
rapidly convergent method for calculating the bond or-
der potentials and forces for the atomistic simulation of
covalent systems, such as transition metals and semicon-
ductors and their compounds, is now available by hav-

ing solved several longstanding problems with the IS-
LTBRM and the recently derived bond order expansion.
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