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Instability of the Fixed Point of the O(N ) Nonlinear a Model in 2+ t. Dimensions
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We calculate the full dimension (canonical plus anomalous), y2„of an infinite number of O(N)
invariant operators with 2s gradients. We find that for large s (e =d —2), y2, =2(1 —s)+e{1
+fs /(N —2)][1+0(1/s)lj+ [e s /(N —2) 1[—', +O(1/s)1+O(e ), correct to two-loop order. Thus, in

two-loop order yz, grows even more rapidly than in one-loop order. Even if e is arbitrarily small, one can
always find, to two-loop order, operators with positive full dimension by choosing s sufficiently large. We
argue that the conventional analysis of this problem may be inadequate.

PACS numbers: 64.60.Ak, 03.70.+k, 05.70.Jk

While exploring the quantum eAects in disordered elec-
tronic systems, Kravstov, Lerner, and Yudson [1] dis-
covered a remarkable phenomenon. In the formalism of
2+ e expansion, there exists an infinite number of
relevant high gradient operators (HGOs) connected to
the nonlinear o model describing the Anderson localiza-
tion problem of an electron in a random potential. Al-
though such operators are irrelevant by power counting,
the one !oop term-renders them relevant, more so as the
number of gradients increases. This nonlinear a model
defined on a Grassmannian manifold arises naturally
within the framework of the replica field theory. The in-
timate connection between the anomalous dimension of
the HGOs and the asymptotics of the distribution of con-
ductance Auctuations has been extensively discussed in
the literature [2]. On the other hand, in a one loop cal--
culation, it has been recently shown by Wegner [3] that a
similar situation exists for the O(N) nonlinear o model
which is believed to describe the critical properties of the
classical (in the sense of statistical mechanics) Heisen-
berg model [4]. It is also worth noting that there exists a
close analogy between the conductance Iluctuations and
the Auctuations of the spin stiA'ness constant, as was
shown recently by one of us [5].

The existence of an infinite number of relevant opera-
tors at the nontrivial fixed point is, to say the least, worri-
some. Thus, in this paper we examine the O(N) model
and calculate the full dimension of an infinite number of
O(N) invariant operators with 2s gradients to two loop-
order. We discuss the method of our calculation, the final
results, and the physical implications. We conclude that
the conventional analysis of this problem may be inade-
quate. The actual computations are too long to be de-
scribed here and will be presented elsewhere in detail [6].
The present calculation would have been virtually im-
possible without the techniques discussed by Alvarez-
Gaume, Freedman, and Mukhi [7] and Grisaru, Van de
Ven, and Zanon [8]. Thus, the excursion to the Rieman-
nian manifold below is a necessity and not a luxury. If
the two-loop term is nonvanishing, a similar calculation
should be feasible for the localization problem. Unfor-
tunately, for the localization problem there is some suspi-
cion [9] that both the two- and the three-loop terms are

where the metric g „(tr) is given by tg „(tt) =6 „
+tv~tv„/(I —tr ). The coupling constant t (the tempera-
ture) is absorbed in the definition of the metric. The
space O(N)/O(N 1) is a R—iemannian manifold with the
coordinates tr"(x) and the metric g~„(tr). In this form,
the action is invariant under general coordinate transfor-
mations (parametrizations) on the manifold. This formu-
lation leads to considerable simplifications in the calcula-
tions described below. Conventionally, the action is writ-
ten in terms of an ¹omponent spin vector S—:(a,

' ). The action above is obtained by resolv-
ing the constraint

~
S

~

= l.
We calculate the anomalous dimensions of the high

gradient operators, OHGQ defined by the cyclic products,
such as

OHGQ (g ...a„,tt 'a.,tr"') (g...,e„,tr a„,tt" ), (2)

where the total number of gradients is 2s. We determine
the renormalization of these operators, OJ, by calculating
the matrix Zt~(t, e) in the following equation:

OP =gZ, ,O, , (3)
J

where 0; is the renormalized operator. Given the matrix
Z;J, we calculate

y;, (t) = zp
dp

(4)

where the momentum p is the renormalization scale. The
largest eigenvalue of y;J(t) evaluated at the fixed point is
the anomalous dimension. We use the background field
method and the dimensional regularization scheme.
Thus, no redundant operators are generated during the
renormalization process [3].

In the background field method, the field x is written

vanishing; that is, the next contribution comes from the
four-loop term. This is a suspicion, however. The reader
should not prematurely despair.

The action of the O(N) nonlinear tT model can be writ-
ten as

S=—"d"xg „(tr)t),tr t)'tr",1
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+ 3 Rni jm 4 '4'Dp( Dv4", (8)

where the covariant derivative D„g is D„( —= 'd„(
+1„8„y'g', I is the Christoffel symbol and R is the
well-known curvature tensor. The corresponding expan-
sion of the action can be easily obtained from Eqs. (6)-
(8). The expression for G„~„shows that the quadratic
part of the action has the nonstandard form g „(y)
&&8„( 8"g". The well-known quadratic form 8„(;8"g' is
obtained with the transformation of coordinates
=ej'(inc) g~, where em (y) is the vielbein [10]. The substi-
tution of this new transformation yields

as n =y + rt (g), where y are chosen to satisfy the
classical equation of motion; q represent the fluctua-
tions. Furthermore, to take full advantage of the sym-
metries, we express the fluctuations in terms of the nor-
mal coordinates (, i.e. , rl (g) [7,8]. These coordinates
are defined by the tangent vector at y of the geodesic
that connects the points y and y + g . Then, the nor-
mal coordinates transform as vectors under general coor-
dinate transformations. Consequently, the coefficients of
the power series expansion of the HGOs and the action,
in terms of (, are tensors. Therefore, by expanding the
action and the HGOs around the classical fields y, and
integrating over the new fields g, one generates a covari-
ant diagrammatic expansion [7,8] that gives directly the
invariant divergences. As a result the expectation value
of an operator (0) can be expressed as

(o) =0 to~( )+ f [dg] 0"(y,g)e "&~'

f[dg]e
—s"(v,()

where the terms 0 ' (y, g) and S ' (y, g) denote the
second and the higher order terms of the power series in

. Note that the second term on the right-hand side will

depend on y after the integration.
A simple rescaling of the field g (x) shows that to

compute the divergences up to order 0(t ) we need to
know the expansion of the action and the HGOs up to or-
der 0(g ). If we define G„,(x) to be g „B„n 'd, tt", the
first four orders of the expansion of G„„(x)are given by

G„'„"(~)=g „D„g Dg"+R t, t,„8„y B,y"g 'g"', (6)

G„'„'1(n) = —,
' R;,k8„n D,g'g'g'+ (p v), (7)

G„„(z)= 3 R~;~ Rft„8„y B„y"g'Pg g'

emDn4 =Dl 4 =|)a4 +mb(V)r)ply 4

where co~ is the spin connection. The only property of
co~ that is necessary in this paper is the one satisfied by
the quantity An (y)—= t0' 8„y . It can be shown that
A„' transforms like a gauge field under the rotations that
connect the previously defined local coordinate systems
[10]. So, it is not surprising that A„'" satisfies the follow-
ing identity:

Aab t) Aab+AacAcb AacAcb
p v v p p v v p

y(t) = At B—t'+0(t')—,

where the matrices 2 and 8 are

(lo)

(c"') (o) (c"') (~)
(o) (D"') ', (v) (D"')

The basis space for the blocks C ' and C are the high
gradient operators. In the one-loop matrix A, this set of
operators is closed under the renormalization group
transformations. This, however, is not true for the two-
loop matrix B, but, as discussed below, it is sufficient to
calculate the matrices C ' and C . The matrices C '

and C are

This identity is important, because it is the only covariant
quantity that can be formed from the gauge field A„' (y).
Any divergence which has the gauge field A„' (y) must
have this form. To find the counterterms that form
Z;J (t, e), we follow the Bogoliubov-Parasiuk-Hepp-
Zimmermann procedure [11] and subtract the subdiver-
gences of the divergent graphs, and then extract the poles
resulting from the subtraction. To regulate the infrared
divergences and to determine correctly the ultraviolet
divergences, we introduce a mass cutoff m in each prop-
agator, i.e., we write p +m instead of p .

The calculation of the eigenvalues of y;~ is easier if we
introduce the conformal coordinates, z =x+ t'y, z =x
—I'y, because the classification of the HGOs is simpler
[1]. In conformal coordinates any HGO is given by

OHoo=(g „B,tt |);ir")' 't'(g;,.8;x'el;tr')i'

&& (gb(arm"az~') &,

where p =0, 1, . . . , [s/2], and [a] is the integer part of a.
Detailed two-loop computations lead to

q 1 1 q12

q22 q23

2X o o q33

0 0 ~ ~

0 0 0 0

C (2)
q34

r11 r12

r21 r22 r23 0 0

r32 r33 r34
(12)

where

q~ + ~ J + ~
= (s —2j ) (s —2j —1 ) —2 vj,

qj. +& J+z = —(s —2j)(s —2j —1), (14)
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rj+1~+1= 2(s —2j)(s —2j 1—)(s —2j —2)+ —, (s —2j)(s —2j —1)(v+6)+3v(s —2j)
—2j(s —2j)(s —2j —1)+14j (s —2j)+6vj(s —2j) —6vj —3vj(j —1) —j (v —9)+4j (j—1),

rj+1J+2= —2(s —2j)(s —2j —1)(s—2j 2) ——
& (s —2j)(s —2j —1)(6—13v/2)+2j(s —2j)(s —2j —1),

rj.+1& = —14j (s —2j) —4j (j—1)+j (v —9),

(is)

(16)

!j=0, 1,2, . . . , [s/2], and v = (N —2 ).
The largest eigenvalue of the matrix A lies in the block

C ' and was obtained by Wegner [3]. This gives the
one-loop result for the anomalous dimension. To calcu-
late the anomalous dimension correct to two-loop order
we use elementary first order nondegenerate perturbation
theory (the eigenvalues are all distinct). The first order
correction to the eigenvalues are contained in the diago-
nal elements of the matrix

dt t2 t3= —(d —2) t + (N —2) + (N —2) + 0 ~ ~

dl 27' (2tt) '

1 U2
d + ts (s 1)—+ t '[s '+ O(s ')] +

U2, dl 2)r

(i9)

(20)

C (2) —
1 ~p

—
1

py~
—1 pD (2)p —

1

where the matrix (0 t)) diagonalizes the first order matrix
We calculate only the block aC a '; it is not neces-

sary for us to know the block pD( p '. Because the
largest full dimension belonging to the upper block is
found to be positive, we already have at our disposal an
infinite set of operators with positive full dimension.
Even if the eigenvalues in the lower block are larger (an
unlikely event, as can be seen from perturbation theory),
our conclusions are unchanged. This explains why,
throughout our calculation, we have not been concerned
about the mixing of the HGOs with other classes of
operators in the two-loop approximation. As mentioned
before, such mixings do take place at the two-loop level.
Thus the anomalous dimensions of the HGOs at the fixed
point t =t* =[2tte/(N —2)][1—e/(N 2)], in the limi—t
of large s, are

y2, =2(1 —s)+ e[l+ [s /(N —2)] [1+O(1/s)]l

+ [e s /(N —2) 2] [3 +O(1/s)]+O(e ) . (18)

If the positivity of y2, for large s continues to hold to
higher loop orders, we have an unusual situation. The
fixed point is infinitely unstable. Moreover, it can be
shown [3] that there is no feedback from the operators
with a higher number of gradients to those with a lower
number of gradients to all orders in perturbation theory.
The situation is entirely different from the e expansion of
the (t theory around four dimensions. Unlike p theory,
the present formalism does not allow us to determine the
new fixed point because of the lack of feedback. Last, we
note that in Eq. (18) the limits N ~ and s ~ do not
commute.

It is also interesting to write down the renormalization
group p functions. Defining e' to be the length rescaling
factor and U2 to be the charges associated with the
HGOs,

The renormalization group Aows for d=2 and d=2+E
are shown in Figs. 1 and 2.

Strictly speaking, the strong coupling behavior cannot
be obtained from these renormalization group equations.
We examine d =2+ e first. There are two principal possi-
bilities for t & t*: (1) U2, 0 and (2) U2, ~. The
first implies that the magnetization drops discontinuously
to zero at the phase transition, but that the correlation
length tends to ~ [12]. The second possibility would
mean that, within the framework of e expansion, the sys-
tem cannot disorder. Although the increase of t signifies
disorder, simultaneous increase of an infinite number of
U2, would not allo~ the spins to deviate from a fixed
direction. This possibility is reminiscent of an idea due to
Halperin [13] who argued that topological defects may be
necessary to disorder the system for N ~ d. Note, howev-

er, that the present formalism should hold for arbitrary N
and d. Nonetheless, we feel that the breakdown of the
perturbative renormalization group would be similar in

spirit to that discussed by Halperin.
We are in similar trouble for d=2. The simplest possi-

U

FIG. 1. The renormalization group Aows for d=2. U2, is the
charge associated with one of the high gradient operators for
sufticiently large s.
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FIG. 2. The renormalization group Aows for d =2+ t. . U2, is
the charge associated with one of the high gradient operators
for sufficiently large s.

ble escape from our dilemma is as follows. Note that at
low temperatures U2, 's tend to get smaller until the tem-
perature is sufficiently large that they start growing
again, which depends, of course, on the precise value of s.
Thus, for low enough temperatures, the renormalization
group equations are at least approximately valid. Now,
if it is possible, within the range of their approximate va-
lidity, to match the solutions of the low temperature re-
normalization group equations to strong coupling calcula-
tions (for example, a Monte Carlo or a series expansion),
then the perturbative renormalization group analysis can
still serve a useful purpose [14]. Even in d=2 the growth
of U2, at higher temperatures can be interpreted to mean
that the system cannot disorder within the perturbative
scheme and that the instantons are necessary [15]. The
other possibility of U2, 0 at even higher temperatures
appears to be unlikely but cannot be ruled out.

In conclusion, we note that the extrapolation of the
2+ t. expansion to t.. =1 does not seem to reproduce what
we believe to be the correct critical behavior of the lattice
Heisenberg model at d=3. Nor does this extrapolation
seem to match smoothly that obtained from four dimen-
sions using p theory [16]. Presently the three loop cal--
culation appears to be barely feasible. As it stands, un-
critical use of 2+ t. expansion may be misleading, more so
in the Anderson localization problem where there are not
many reliable checks. The results for d=2 can be sal-
vaged orlly if they are supplemented by strong coupling
calculations [14].

It is a great pleasure to thank Igor Lerner whose semi-
nar at UCLA inspired us to explore this problem. We
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