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We show that Gaussian quantum fluctuations, even if infinitesimal, are su%cient to destroy
the superfluidity of a disordered boson system in 1D and 2D. The critical disorder is thus finite
no matter how small the repulsion is between particles. Within the Gaussian approximation, we

study the nature of the elementary excitations, including their density of states and mobility edge
transition. We give the Gaussian exponent g at criticality in 1D and show that its ratio to g of the
pure system is universal.
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In the presence of disorder (repulsive), interacting
bosons can undergo a T = 0 transition from the super-
fiuid (SF) phase into an insulating Bose-glass (BG) phase
[1—8]. The disordered boson system is directly relevant
to certain physical systems like He in porous media [9]
and dirty superconductors [10], and less directly to oth-
ers like the quantum Hall effect [11]. This transition is
intrinsically quantum in nature in that no amount of dis-
order will destroy the superfluidity without invoking the
noncommutativity of density n and phase P. As such,
it is representative of quantum phase transitions driven
by disorder which does not couple directly to the phase
of the order parameter. Hence, the usual saddle point
or Hartree solution is always long-range ordered (LRO),
and corresponds to a nonuniform condensate. Given that
it is of interest to investigate what "minimal" quantum
effects are necessary to give a transition. In terms of go-
ing beyond the saddle point approximation, these effects
can be characterized as Gaussian, nonlinear, topological
(as in vortices), etc. In eÃect, one is asking "what drives
the transition, " even if the true universality class of the
transition may require quantum fiuctuations beyond the
"minimal" ones. To clarify this perspective, consider the
2D classical XY model as an analogy. There, spin waves
alone can explain why the low temperature phase is alge-
braic, even though (bound) vortices do renormalize the
exponent rl (universality class). On the other hand, vor-
tices must be invoked to explain the Kosterlitz-Thouless
transition.

In this Letter we show that Gaussian fluctuations, even
if infinitesimal, are suKcient to destroy superfluidity in
1D and 2D at finite disorder. The model we use is the
hard-core boson model with on-site disorder, which is
equivalent to the spin-1/2 XY' magnet with a transverse
random field [1,3,4]. Written in a rotated frame for later
convenience, the Hamiltonian is [5]

7t = —Z) (S;S; S;S,*) —) h, S&,
(' ) 2

where the random field (h&) is given by an independent
Gaussian distribution function P(h1) with width h. We
pick this model because while it contains the features be-
lieved to be essential for the SF-BG transition, it has a
simple classical solution and a "builtin" parameter to sys-
tematically investigate quantum fluctuations. It is also
of interest as a disordered quantum spin system [3—5].

The off-diagonal LRO of the boson system is related to
the magnetic LRO in the 2;-z plane. The classical solution
for this model corresponds to treating the spins as clas-
sical vectors. In terms of the bosons, one is dealing with
variational wave function of the form p . (us+vs bI) ~0), or,
equivalently, Jastrow wave functions given by Gutzwiller
projection of condensate wave function (Q. P-b~t) [0).
In Ref. [1], it was shown that while the classical ground
state always has LRO, this is not the case when the quan-
tum (specifically S = 1/2) nature of the spin operators is
taken into account. Following the motivation discussed
in the previous paragraph, it is thus of interest to in-
vestigate if the destruction of LRO can be achieved by
Gaussian quantal effects. This can be studied by means
of a spin-wave analysis [5].

Within such an approach, the first question is what
would be the signature of destruction of the LRO [12].
Since the spin-wave analysis is an expansion about the
ordered state, this destruction is indicated by an insta-
bility. Possible scenarios are (1) a diverging fiuctuation
in the order parameter, (2) negative excitation energies,
or (3) complex excitation energies. In the pure case, sce-
nario (1) is observed in 1D. Exact solution for S = 1/2
[13] and general understanding of 1D spin systems in-
dicates that these diverging fluctuations destabilize the
LRO and the ground state has algebraically decaying cor-
relation functions.

We now derive the spin-wave Hamiltonian [5]. First we
generalize Hamiltonian (1) to arbitrary spin S by rescal-
ing j~ J/S2 and h1 ~ h~/S. In the infinite S limit, the
spins behave classically. Taking the z axis as the order-
ing axis, the spin on site j lies on the y-z plane at angle
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0& from the z axis. Minimizing energy, one finds that all
cos 8~ g 0, hence there is LRO, no matter the value of tr

[1,14]. Defining Holstein-Primakoff bosons with respect
to the local (classical) spin orientation, to order 1/S, one
arrives at the quadratic Hamiltonian [5]:
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0.40

x h, = 0.5
* h. = 0.6

+ h. = 1.5

'H = —J) cos 8, cos 8~ —) hj sin 8j

) Jij &i &j + Kij ai aj + H.c. + 0
~2S ' qS'~'

(2)

where J,j = J(l+sin8, sin8j)+„.„'8 6,j and K,j = J(l-
sin8, sin8j). Equation (2) describes Gaussian fluctua-
tions of strength 1/S about the classical ground state. In
Ref. [5], Eq. (2) is studied perturbatively for weak disor-
der. In this paper, we will diagonalize (2) numerically on
finite-sized lattices, and will not limit ourselves to weak
randomness. This will enable us to study the destruction
of LRO. Equation (2) is formally diagonalized by a Bo-
goliubov transformation aj ——P (uj~p +vj~pt ), where
o, is the eigenstate index. We have taken the u's and v's

to be real. The p's are boson operators if
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I'lG. 1. I"luctuation corrections to the order parameter

b'm/m is plotted against ln N. The divergence becomes faster
than ln N for A less than a critical value A, = 0.6, The solid
lines are obtained through a linear fit and the dashed line is
a guide to the eye.

(uj~vj(y' v~~vj~') b~~'

and we seek the solution Qsw = Eo+p
implies the Bogoliubov equations for u's and i~'s,

(J,,', +K.. .' ),
(j)

~v = (K u + J v )
0')

to be "normalized" by the condition (3). For N sites,
there are 2N eigenstates. For a given solution with eigen-
value a, there is the complementary solution u ~ v, with
eigenvalue —u. However, only one of these is consistent
with (3), and the other is unphysical, leaving us with N
physical solutions. The Goldstone mode, corresponding
to uniform spin rotation about the y axis in (1), is given

by u, = v, oc cos 0, .
We investigate LRO instability in 1D and 2D. Calcula-

tions in 1D are done on lattices of size 50—120, averaging
over 500 configurations for each value of 4—:J/h, and
in 2D on 6 x 6 to ll x 11 lattices averaging over 200 con-
figurations. Note that 4 small implies strong disorder.
Instability criteria (2) and (3) are not observed, leaving

(1), a diverging fluctuation in the order parameter as the
sole possibility. Within the spin wave approximation as
formulated, the relevant quantity is

6m = —) cos8jb(S') = —) ) cos8jvj
2 3 -~0

d&p M V Gd )

where p(w) = & g 6(a —a ) is the density of states
(DOS).

As remarked earlier, in 1D bm diverges as K ~ oo even
without disorder, so it seems criterion (1) is inapplicable.
However, more precisely, 6'm oc ln N, and we view this as
an indication for an algebraic LRO (see later), hence the
ground state is still a superfluid. Thus, we argue that
the transition is marked by hm diverging faster than ln N.
This is in fact seen in our calculation, and is shown in Fig.
1, with the critical value of 6 = 6, = 0.6, independent of
S. The transition occurs thus at finite disorder. Since the
spin-wave approximation is correct in the large S limit,
there is a discontinuity between S ~ oo and S = oo. In
2D, 6m/m is finite in the pure case as N —+ oo, which we

take to mean the LRO is stable, and is consistent with
the exact result for S = 1/2 [15]. Figure 2 shows 6m/m
vs in% for diferent values of L, and we see a transition
occurring between 0.1 and 0.08.

Thus, in contrast to the classical case, already in

the Gaussian approximation a transition to a disordered
phase occurs with sufIicient disorder. Since in a Gaus-
sian theory the ground state is just the classical state
modified by the zero point motion of the excitations, it
is of interest to ask whether the transition is due to a
change in the DOS [p(a)] or the nature of the excita-
tions [v2(u)] or both. In the pure case, v2(w) oc i and

p(w) oc a" for small w. For the infinitely strong dis-

order (J = 0) case, the excitations are single spin flips,
with excitation energies ]hj[. It seems reasonable to ex-

pect therefore po = p(w —+ 0) is finite in 1D for all 4,
and the transition must be due to v2(w) diverging faster
than 1/w. This picture is confirmed by our numerical
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FIG. 2. The same as Fig. 1, plotted for 2D systems. Unlike
in 1D, bm is finite for weak disorder and diverges for A (A„
which is between 0.1 and 0.08. (b) The same plot as in (a),
but presented on a diferent scale, which shows clearly that
bm is bounded as N ~ oo for large A.
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FIG. 3. DOS on the insulating side (D = 0.5) in 1D. Here
N = 100.

calculations (see Fig. 3). The ambiguity in deciding po
for infinite system from finite-size calculation is reduced
by checking the scaling of po with ¹ For 6 ( L„we
find 6m oc N, with 8 = 8(A); while v (w) oc ~, with
6 = 1+ 6I, again indicating po finite. In 2D, the ordered
phase should be characterized by p(~) cc u and the disor-
dered phase by po finite. Our results are consistent with
this. For u & 0.1, p(cu) is linear in w, with the slope
increasing with decreasing A. For 4 ( 0.08, po is finite.
The specific heat should thus be cc T and oc T" deep in-
side the BG and SF phases, respectively. Unfortunately,
we cannot say for certain whether the DOS transition ex-
actly occurs at the order parameter transition due to the
inability of pinpointing 6,. (The popular finite-size scal-
ing method for locating critical point is not applicable
here since there is no scale invariance. )

In the SF phase, the low-energy excitations calculated
here are approximate solutions of the collective modes
(phonons). It is of interest to ask if their localization
transition is related to the "localization" of the ground
state, or just as an Anderson localization problem. Since
the Goldstone mode is always extended, one expects for
a given 4, a transition from extended to localized states
with increasing energy at a mobility edge energy E,.
Does E, ~ 0 as 6 ~ 4,+7 The quantity we calculate as
a measure of localization is the inverse participation ratio
p, which we assume for localized states scale as the inverse
localization length ( i, and is zero for extended states in
infinite systems, E, is the energy below which p vanishes.
However, for finite size, p scales as the greater of (
L . Hence, at low energy, where ( & L, p(E) is con-
stant, and only for E & E,(L), where p(E, (L)) = L
does p(E) give the behavior of an infinite system. One
way to obtain E, is by extrapolating that part of the
curve to where p = 0. An improved method is to ex-
trapolate E,(L) to L ~ oo [16]. Equation (4) guarantees

that u~~ and v~~ are both either extended or localized,
so it suffices to calculate p(E) for u, ~. In Fig. 4 we

show p(E) for various L's in 1D for 6 = 1.5 (SF side)
and 6 = 0.5 (insulating side). The former seems to show
clearly a finite E„while for the latter, we ascertain E,
to be very small, probably zero (our extrapolation actu-
ally gives a small unphysical negative value). Within our
accuracy of E, and A„we determine that E, ~ 0 close
to, if not at, 6, . This seems to support the idea that
the localization of the ground state and the excitations
occur simultaneously [17].

Upon reflection, however, we have serious doubts. In
the perturbative (in disorder) calculation of Ref. [5], the
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FIG. 4. Participation ratio p(Z) in 1D is plotted for several
values of N. The pseudomobility edge E, is obtained from
these plots through the procedure described in the main text,
In (a), 4 = 1.5, the system is in the superfluid phase and E,
is finite. F, is zero in the insulating phase as is shown in (b)
for A = 0.5. The dashed lines are smooth extrapolations to
large N.
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phonon mean free path is found to diverge as E ("+i}.
Common wisdom has it that in 1D, the localization
length and the mean free path are essentially identical,
since any scattering is backscattering. Hence, one ex-
pects the relatively slow ( (E) oc E for small E, cross-
ing over to a more rapid E dependence at a higher en-
ergy E . This is in fact known to be the case for classical
vibrational modes in 1D [18], and all states except the
uniform translation mode are localized. The divergence
of the localization length ( is thus not a true critical phe-
nomenon. In our calculation, if the size L ( ((E~), then
we cannot probe the weak E dependent regime, and we
will mistake E for the true mobility edge. For compar-
ison, we look at a finite system of random masses con-
nected by springs and find p(E) curves similar to Fig.
4. While our results do not constitute evidence for all
eigenstates of (2) to be localized in 1D, we believe this is
in fact the case, and what Fig. 4 shows is E~ decreasing
as the disorder is increased, vanishing at or close to the
SF-BG transition. Since even in 2D it is believed that all
classical waves are localized [19], it seems probable that
all phonon excitations are localized too. This can be
tested experimentally on He absorbed on a disordered
substrate.

In our model, the classical state is the Gutzwiller state,
and 1/S serves as an expansion parameter for quantum
Buctuations. Since the physics is suKciently general, we
believe the above results would hold true if one consid-
ers soft-core (e.g. , Hubbard U) models and uses 5 as the
quantum expansion parameter. What about a phase di-
agram of disorder vs U? Since bosons will condense into
the lowest energy (localized) state for U = 0, the critical
disorder is 0. How about U ~ 0? The complication is
that increasing U both affects the classical condensate
and enhances quantum fiuctuations. However, provided
the product Un remains finite, the Hartree solution is
extended even for infinitesimal U [20]. Thus, the U ~ 0
limit should not be qualitatively different from the limit
of 1/S ~ 0. For example, the critical disorder is finite.
This conclusion is in agreement with numerical works
performed on the disordered boson Hubbard model [8].
Since conventional LRO is stable for weak disorder in 2D,
except for trivial dependence on dimensionality, and pre-
sumably a finite mobility edge energy for the phonons at
weak disorder, the results for 2D should hold for SD also.

In 1D, based on a perturbative renormalization group
calculation, Ref. [17] predicted that the renormalized
critical exponent rl is universal and equal to 1/3 at the
SF-BG transition. One might ask what the value of g is
in the Gaussian theory. Rigorously, the spin-wave theory
as formulated cannot produce a power-decaying correla-
tion function. [It is similar to using (V'rr)2 as the action
in the classical nonlinear o model. ] However, rl and p,
the coeflicient of ln N in 6m/m, are proportio'nal in the

pure case. Assuming the relation holds even with disor-
der, it implies rl, /rl~„„= p, /p~„„. From the slope of the
4 = 0.6 curve in Fig. 1, we estimate rl, jrl&„„=1.4. This
ratio is universal, while rk is not. rj, ~ 0 as I/S ~ 0 in
our model, or as U ~ 0 in Hubbard type models.
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