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Criticality in Ionic Fluids: Debye-Hiickel Theory, Bjerrum, and Beyond
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Debye-Huckel (DH) theory predicts phase separation in the primitive model electrolyte: hard spheres
of diameter a with charges ~ q. The coexistence curve (CC) is acceptable with T,*—= kttT, a/q
which is roughly correct, but the critical density, p,* =p, a =1/64tr, is far too low. Allowing for associa-
tion into ideal dipolar pairs, following Bjerrum, improves p, and leaves T, unchanged but yields an un-

physical CC. Extending DH theory to compute the dipole-ionic-Quid coupling yields a mean-field
description with sensible CC and (T,*,p,*) close to Monte Carlo based estimates: (0.057 ~ I s,
0.030 T- 8).

PACS numbers: 64.70.—p, 05.70.Fh, 64.60.—i

Seventy years ago Debye and Huckel (DH) published
a theory of the thermodynamics of strong electrolytes [1].
The DH limiting laws for dilute solutions were subse-
quently proven to be exact [2]. Despite its fame, DH
theory has unappreciated merits [31 relevant, we argue
here, to the study of gas-liquid or liquid-liquid criticality
in ionic systems. That topic is of renewed interest [4] be-
cause recent precise experiments [5,6] reveal two classes
of electrolyte solutions [7]: In solvophobic systems, the
phase separation is principally driven, as in nonelectro-
lytes, by the "dislike" of the (ionizable) solute for the sol-
vent; critical exponents are standard, i.e., Ising-like, with
p=0.32, ) =1.24, etc. By contrast, in Coulombic sys-
tems electrostatic interactions provide the driving force,
phase separation occurs at very low concentrations, and
the observed exponents are classical, i.e., van der
Waals-like with P=0.50 and y=1.00 [4-7].

In seeking to understand these facts the restricted
primitive model (RPM) is basic: It consists [1] of
i =1, . . . , N—:pV hard spheres of diameter a with 2 N
carrying charge q; =+q, the rest a charge —q. The sol-
vent is represented by a dielectric constant, D, entering
the pair potential p(rI) =q;qI/Dr;t. Indeed, via the laws
of corresponding states, Coulombic systems seem well ap-
proximated by the RPM [3,4,7]. Does this model exhibit
phase separation and criticality~ If so, what are the
relevant physical mechanisms' Understanding these at a
classical or mean-field level seems an important prere-
quisite for renormalization-group calculations that might
reveal whether Coulombic systems truly represent a non-
Ising-like universality class or whether, as seems plausible
a priori [8], they merely have an anomalously small
asymptotic critical region I~t ~—:~T —T, ~/IT, & t x && I) but
would eventually exhibit crossover to Ising-like behavior
[9]. In the latter case, however, a satisfactory theory
must explain why t x is so small.

In fact, Monte Carlo (MC) simulations [10] going
back two decades suggest the existence of a critical point,
but estimates of critical temperature T, and density p,
have ranged widely. Thus in 1991 Valleau [10(b)] con-
cluded T,* =0.070 and p, =0.07, where T* =kttTDa/q

and p* =pa, but our analysis of Panagiotopoulos' more
recent data [10(c)]yields

T,* =0.057+ 1, p, =0.030+ 8.
We feel that Panagiotopoulos' data are more reliable
since, in particular, while Valleau [10(b)] simulated only
with N =32 ions, he used N =512 ions. Finite-size shifts
of T, should scale as N ' ' with v=O. S0-0.63 so the
diA'erence is significant: Indeed the estimate for T, in (1)
may well be (3-6)% too high since finite size was not al-
lowed for [4(c)].

The first thorough analytically based study of the
RPM, by Stell, Wu, and Larsen [11],led to the contrast-
ing estimates T,*=0.085, p,*=0.011. They utilized a
range of series expansion and closure techniques, etc. ,

but, as with the simulations, little physical insight seemed
to be gained. The hypernetted chain, Percus- Yevick, and
other integral equations from the theory of Auids have
also been brought to bear on the RPM but again provide
little insight. Furthermore, it has become increasingly
clear that all these equations entail serious anomalies in

the critical region [12]. Generally, indeed, they provide a
much poorer description than do simple, traditional ap-
proaches following van der Waals (vdW) even though
these cannot, of course, yield Ising-like critical exponents.

Accordingly, our aim has been to uncover a simple
theory which embodies as directly as possible the essen-
tial physical mechanisms. As we demonstrate, D H

theory provides a suitable basis but requires extension:
First, as realized by various authors [2,3,4(a)], one must
allow, following Bjerrum [13], for the association of ions
to produce neutral, dipolar pairs: This compensates for
much of the error incurred in DH theory by the lineariza-
tion of the Poisson-Boltzmann (PB) equation. Beyond
that, however, we show it is essential to account for the
interactions of a dipolar pair with the residual ionic fluid;
this may be accomplished by extending the DH calcula-
tions.

We treat phase transitions systematically via the pres-
sure, p(T, It„pb, . . .), as a function of the chemical po-
tentials pz for species A, B, . . . , J, . . . , with number den-
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FIG. 1. Diagram illustrating boundary surfaces in the DH
solution of the linearized PB equation for (a) a monopole and

ion of diameter a and (b) a dipolar pair where a2~ j—,
' a is an

eA'ective cavity diameter.

0.04 =

003
0 0.05 0.1 0.15 0.25

sities p~. Coexisting phases are then described by multi-
ple solutions [p~jk =~ of the extremal problem,

p =max, , f(T;p„pb, . . . )+g p p (2)
J

FIG. 2. Coexistence curves for the RPM electrolyte accord-
ing to Debye-Huckel theory alone, DH, and as augmented by
ideal Bjerrum pairing, DH Bj. The parallelogram represents
simulation-based critical point estimates [15].

where f= —F/V —is the reduced Helmholtz free-energy
density which we plan to construct as a sum of terms em-
bodying relevant physical features. Note also that equi-
librium under a chemical reaction, say, v~A+ vgB= vcC
is ensured by imposing v~p, + vgpb = vgpg, etc.

To start, each species requires an ideal gas term-

Pf' =p~ —pjln(p&A~/g~), where P =I/kttT, A~(T) is the
thermal wavelength, and (~(T) the molecular partition
function. Hard core repulsions may be included via the
free-volume approximation

Pf = gpj ln 1
—QBJp~

i J J
(3)

The B~ are chosen to yield appropriate maximal densities
or to match high-T second virial coefficients [14]. Then
vdW theory follows by adding attractive second-virial
terms via

Pf =(A p +A bp pb+ )/T, Ap, &0. (4)

For simple nonionic fluids vdW theory is rather success-
ful, predicting, e.g. , T, values and densities p, /pm, „=—,

'

within (10-20)% of reality.
A first idea for RPM electrolytes is to replace f by

the DH limiting law pf =tc /12tr ee p t /T t [1,2],
where the inverse Debye screening length is

K'(T, [pjj ) = 47rg qgpg /Dktt T'
J

(5)

(Note f" is independent of the ionic diameter a. ) But
this LL theory gives p,*—=p, /p, „=—,

' and T,* =0.56. . . ,

both too large [11(a)] by factors of 9 to 10. Much more
reasonable is to use the full DH theory which explicitly
incorporates the ionic diameter in solving the linearized
PB equation [see Fig. 1(a)] and thereby matches observa-
tions up to higher ionic strength [1,2]. Indeed, the DH
result [1,2]

Pf "=[ln(1+xa) —)ca+ 2 (tea) ]/4tra (6)

combined only with f' yields a critical point [3] with

x, a =1, T,* = —,', , p,* = I/64tr=0. 005, and p, v, /kgT,
= 161n2 —11 =0.090. The corresponding coexistence
curve, p+ (T) (which seems to have been unexamined
previously), is shown in Fig. 2: It has a parabolic peak so
p= 2, and, as to be expected, all the critical behavior is

classical. Allowing for the hard cores by adding in Pf"
reduces T, by 1% or 2%, and x', a and p, by 5% to 9%,
while the coexistence curve narrows [15].

That this simple theory yields T,* =0.0625, only 10%
higher than the estimate (1), suggests that the DH
description of the screened ionic fluid embodies much of
the truth, but the critical density p,* is too small by a fac-
tor of 5 or 6. Why? The explanation lies in ideas ad-
vanced by Bjerrum already in 1926 [13]. At low temper-
atures many ions bind strongly into neutral (+, —) pairs,
say, of density p2 [2,3,4(a), 13]; this reduces the density,

p~
=p++ p —,of the free, unassociated ions which per-

form the screening and drive the transition. Hence a
higher overall ionic density, p=p~+2p2, is needed to at-
tain criticality.

Quantitatively, following Bjerrum [13] and many later
workers, one treats the neutral pairs as an ideal species
in equilibrium with the ions and so imposes p2 =p+
+p =2pi and invokes an association constant K(T)
=(2/g+g-, where, as above, gz, g+, and g- are the inter-
nal pair and ionic partition functions. A natural physical
postulate is [13]

f d
K(T) =4tr e' "r dr=4tra Qbe /b, (7)~a

where b =1/T* and Q~6=1.390'. For the necessary
cutoff, d, we adopt Bjerrum's value 2 ba [2, 13,15].
[Despite contrary tendencies in the literature, the cutoff d
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the dipole-ionic (DI) contribution is found to be

Pf2, 1
= (x'p2a '/a&T*) ~2(«~) —p2p~/T' (8)

[15,17]. The sum of all higher-multipole terms can also
be found [15] but in the region of interest amounts to less
than 1% of the dipolar part.

As to a 2, geometry implies 4
—

1 ~ s 2 ~
2 while

simple arguments indicate s2=0. 1-0.25; for convenience
we adopt here the angular average value s2=0. 162 [15].
Note also that Fig. 1(b) shows the dipolar ions in direct
contact with centers separated by the minimum distance
a. However, such a configuration has vanishing statistical
weight and the Boltzmann factor embodied in the Bjer-
rum expression (7) implies, at low temperature, a some-

must not be interpreted simply as the size of a typical
ionic pair. See further below and note that no
modification of (6) is called for at this stage. ] Bjerrum's
ansatz has been much debated and various alternatives
(e.g. , setting Qb Q —= 1) has been advanced [2(b)].
However, Ebeling's careful analysis, based on defining
K(T) so as to yield the correct equation of state to order

p [2(b),3(c),16], implies that the error entailed for
T* ~ —,', is less than 0.2% [15], amply adequate for us.
The resulting "DHBj theory still exhibits criticality with

x,a =1 and T,* = —,', [17]; further, the critical density,

p,* =(I+Q~6e /2 )/64+=0. 045, is much improved being
only —50% larger than the MC estimate. [In more de-
tail one has p2, ee K(T, )(p~*,), yielding (p2/p~*), =4.0.]
However, while all exponents remain classical, the coex-
istence curve, pR- "(T), itself now assumes the peculiar
"banana" shape [18] shown in Fig. 2.

This DHBj curve is surely unrealistic. To understand
why, we observe via (2) that it differs from the DH
curve only by an additive function 2po(T) [implying
hp "(T)=Ap " "(T)]. Furthermore, po(T) is just the
density of ideal Bjerrum pairs at chemical potential
p2(T) =2pf(T) where pP(T) represents the pure DH
phase boundary. It is clear physically that pp(T) in-
creases exponentially fast when T falls as ever more free
ions condense into neutral bound pairs, draining the free-
ion fraction down to zero. Evidently, then, the assumed
ideality of the neutral but strongly dipolar bound pairs is
the major theoretical defect.

To advance further we use DH theory to compute the
interaction of a dipolar pair with the fluid of free ions.
Specifically, we solve the linearized PB equation for a
pair of ions in close contact, as in Fig. 1(b); thence the
mean energy of interaction of the paired ions with the
ionic Auid is found, and, via the usual charging process
[1,2, 15], the incremental free energy is computed. To
simplify the calculation we embed the dipolar charges in

an effective spherical cavity of radius a2=—(I+s2)a: See
Fig. 1(b).

Then, with

co2(x) =3[in(1+x+ —,
' x') —x+ —,

' x']/x'= —,', +O(x),
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FIG. 3, Coexistence curves for the DHBj theory augmented
[curve (a)] by inclusion of dipole-ionic coupling and [curve (b)]
with further allowance for hard-core repulsions. The boxes rep-
resent the simulation data of [10(c)] and the suggested critical
point.

I

0.1 0.15

what larger, T-dependent average separation a ~

= (1
+s~)a. Hence in (8) the factor a would better read
aa~. However, the approximation s~=QbT*(1+8T*)
proves reasonable [15] and yields s~ 0. 13 for T* ~ —,', .

For simplicity, therefore, we accept s
&
=0 here [15,19].

The new coexistence curve implied by this augmented
DHBj or "DHBjDI" theory is shown in Fig. 3 [curve (a)]
together with the MC observations [10(c)]. The critical
parameters are rc, a = 1.13 and T,*=0.0574, p,

*=0.0280,
which fall squarely within the MC range (1). Naturally
all exponents remain classical. If, further, one allows for
the hard core by adding (3) with B~ =

2 82=4/3 43 (cor-
responding to an anticipated bcc or CsC1 crystal pack-
ing), the curve shifts downwards yielding x,a=1.03 and
T,*=0.0554, p,*=0.026o, see Fig. 3 [curve (b)]. Then T,
lies on the border of the MC-based estimates although p,
is still within the uncertainties. Considering the concep-
tual simplicity of the augmented theory, the agreement is
remarkable: We conclude that the overall physical pic-
ture is now essentially correct.

Doubtless, considering the approximations made, the
numerical results are somewhat too good. Thus, T,* is
roughly proportional to 1/a2, e.g. , s2=0. 100 with the
same B~ =

& B2 gives T,*=0.058 and p,*=0.025 [still
consistent with (1)]. Beyond that, tetramers (2+,2 —),
and higher-order clusters [4(a),20] must play a role when
T falls further below T, . They can be included in the
same way and should improve the description of the low-
density vapor [4(a)]. However, our calculations suggest
that their contribution in the critical region should be
fairly small. These eAects and, e.g. , the screened dipole-
dipole attractions can be represented in an ad hoc way by
adding a vdW term (4): 322 of order 0. 1 (in reduced
units) proves reasonable; at lower T, the liquid free ener-

gy is improved, instead, by a small p term which mir-
rors the static crystal [1,15,21].

Finally, of course, there is no allowance for nonclassi-
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cal critical Auctuations. Nor is an estimate of a putative
nonclassical region (~t~ & t») provided. Both issues will

be addressed elsewhere [8,15] but as regards the latter,
perhaps our values tc, a =1.0 to 1.13 could provide a hint.
The Ginsburg criterion yields t» ec (a/Ro) (for three di-
mensions), where Ro is, say, the mean square range of
the effective density den-sity attractive potential. If one
guesses that this varies as e ""/r (mirroring the charge-
charge screening), one might conclude t » ~ 0.15t »",
where t»" corresponds to a Lennard-Jones (6, 12) poten-
tial [151. That would point to a somewhat smaller non-
classical regime for the RP M and its real analogs
[4-7,9]. However, (i) other factors enter the Ginsburg
definition of t» and (ii) the density-density correlations
demand separate investigation. Nevertheless, we believe
that the picture we have expounded here of Debye-
Huckel-Bjerrum theory augmented by the dipole-ionic
Auid couplings provides a sound basis for further pro-
gress.
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