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Nonlinear Collisionless Magnetic Reconnection
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Collisionless magnetic reconnection in regimes where the mode structure is characterized by global
convection cells is found to exhibit a quasiexplosive time behavior in the early nonlinear stage where the
fluid displacement is smaller than the equilibrium scale length. This process is accompanied by the for-
mation of a current density sublayer narrower than the skin depth. This sublayer keeps shrinking with
time.

PACS numbers: 52.35.Py

t), U+ [y, U] = [J,tirl,

6,F+ [p, F] =0,
where we use the notation t), =r)/Bt and

(2)

with c, the unit vector along the z direction. U=V p is
the fluid vorticity, p is the stream function, v =e, &Vp is
the quid velocity, J= —V y is the current density along

Magnetic reconnection in collisionless regimes, where
electron inertia is responsible for the decoupling of the
plasma motion from that of the magnetic field, is a well
known process in astrophysics [1]. It is quite exciting
that this process can now be observed in laboratory plas-
mas produced by tokamaks such as the Joint European
Torus (JET). Indeed, at the high plasma temperatures of
these experiments, internal plasma relaxations (the so-
called [2] sawteeth) can occur on a time scale shorter
than the electron-ion collision time. Motivated by these
observations, the linear theory of m = 1 kink-tearing
modes, which trigger the sawtooth relaxations, has re-
cently been extended to experimentally relevant regimes
[3-6], leading to the conclusion that these modes can
remain virulent at low collisionality with an initial growth
rate which compares favorably with that observed in the
experiments. However, the nonlinear evolution has
remained unclear. While Wesson's [7] modification of
the Sweet-Parker-Kadomtsev [8-10] scaling has given an
estimate of the collisionless reconnection time in good
agreement with that observed experimentally, Drake and
Kleva's numerical simulation [11] of the merging of two
isolated Aux bundles has led to the suggestion that the
collisionless reconnection rate is greatly reduced as the
nonlinear phase is entered, i.e. , for magnetic island widths
comparable with the plasma skin depth. Later investiga-
tions taking into account the finite ion (sound) Larmor
radius found exponential [12] or even faster [13] non-
linear growth.

With the aim of clarifying these issues, we present the
numerical and analytic solution of a collisionless, in-

compressible, 2D slab model where Larmor radius eAects
are neglected. The equations we solve are 5'd~ 1, (3)

which can be satisfied for low values of m and c «1 such
that 6' —8/trk . In this regime, the structure of the
stream function is macroscopic, with pq = p sgnx,—:(i y/k )y, everywhere except in the reconnection
layers. For h, 'd)) 1, the eigenfunctions in the vicinity of
the layer at x=0 take the form 6JL = —

Itr (2/trd )'
xexp( —x l2d ) and wL = p erf(x/2'i d), which match
onto the outer solution for ~x~ ) d. Thus, the current lay-
er in the linear stage has a width Bq —d. The linear

z, y is the magnetic flux function, and F=—y+d J is the
canonical momentum along the field lines, with d the
inertial skin depth. Thus, [p,F] =v VF and the collision-
less Ohm law (2) can be written as dF/dt =0; i.e. , F is
conserved on a moving Quid element. The coordinate z is
ignorable, t), =0. The coordinates x and y vary in the in-
tervals x 6 [ L,L, ] a—nd y 6 [ —L~, L~], with the slab
aspect ratio e=L /L~ —(1. Periodic boundary conditions
are imposed at the edge of these intervals. The magnetic
field is 8 =Boe, +Vyxc„with 80 a constant value which
we take to scale as Bp —s ~Vy~ in order to mimic the
magnetic field of a tokamak. All quantities in Eqs. (1)
and (2) are dimensionless, with L and r~ =(4trp )'
&L,/8~ determining the length and time scale normaliza-
tion.

We consider an equilibrium specified by I =R', po
=Up =0, Jp =

l/rp =cosx, and Fp = (I+d ) yp. This equi-
librium is tearing unstable to linear perturbations of the
type (p, Bp) =ReI[pL(x), GAL(x)]e"'+' rJ, with k =ms
and m an integer number, and with pL(x) and 6yt. (x)
respectively odd and even functions around the two
equivalent reconnecting surfaces at x =0 and at
x = ~L . In the limit d&&L, the solution of the linear-
ized system can be obtained analytically using asymptotic
matching techniques. Electron inertia is important within
narrow layers around the reconnecting surfaces. In the
outer region, the linearized mode structure for 0 & k ~ 1

is Stirt =y cos[tr(~x~ —tr/2)] and &pL =(iy/ksinx)6yt. ,
with y a constant and tc—= (1 —k ) ' . Instability re-
quires that the outer region parameter 5'—= ~d ln6yt/
dx~;:p- be positive. In our case, 6'=2tctan(tetr/2). We
consider the large-6' regime, defined by
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FIG. 1. Cross sections of (a) 8y/(8y)» =p /2, (b) v„/

(v ) = —L t2,
' (c) J; (d) F versus x at y =0. The X point is at

x =0; the 0 point of the second island chain is at x = ~ L„.
Times are indicated by the arrows.

growth rate is yL = kd.
The system of Eqs. (1) and (2) is solved numerically

with a pseudospectral code [14] which advances in time
the Fourier representation of the field variables, truncated
to 1024x64 (x,y) components. We are interested in the
early nonlinear phase, defined by the condition d ( w

& 2L„, where ~ is the magnetic island width. The initial
conditions are chosen to approximate closely the linear
eigenfunctions, and in particular to reproduce the spatial
symmetries of the linear solution around the A and 0
points and the reAection symmetry with respect to the
four points x= ~L„/2, y=+ L~/2. It can be easily
verified by inspection of (1) and (2) that these sym-
metries are preserved during the nonlinear evolution. An
important consequence is that the value of F at x =0 is
frozen to its initial value, i.e., F(x =O,y, t) =Fo(x =0)
=1+d .

For e((1, the adopted equilibrium is linearly unstable
to several mode numbers, m. On the other hand, in the
numerical analysis of the full nonlinear system (1) and

(2), it is convenient to follow the evolution of a single
linearly unstable mode. This requirement is dictated both

by reasons of simplicity and by analogy with the kink-

tearing instability in a toroidal plasma. Therefore, we

present numerical runs with @=0.5 and d/2L =0.04,
which give dh' = 2.03 for m = l, thus satisfying the
large-5' condition (3), while the other m values are stable
(5' ~ 0 for m ) 2). Figure 1 shows sections of'

By=—y —yo, v„= —By/By, J and F across the X point
(y=0) at various times. The linear phase conventionally
lasts until t —80, when the magnetic island reaches a
width of order d. The linear layer width —d is visible
from these graphs. For t ) 80, the width of the profile of
v», 6~—= (v»)»-L, /2/(B»v„) -o, as well as that of By,
remain of the order of the skin depth [Figs. 1(a) and
1(b)l. By contrast, the current density profile [Fig. 1(c)]

FIG. 2. Cross sections of (a) 8y; (b) B'F/ax ', (c)
vy/(vy)y ——L t2 versus y at x =0. The island's X and 0 points are

y
at y =0 and y =L», respectively. Also, (d) time dependence of
the logarithm of the inverse scale lengths 8„' (solid line) and
IfJ (broken line).

v (x,y, t) = (vto)g( )hx( )y+u( , xty), (4)

where A (y) —k ' sin(ky), g(x) —ivL (x)/&p contains the
linear scale length d and u(x, y, t) develops the rapid
scale length 6(t) —6J observed in the numerical simula-

develops a sublayer whose width around the X point,
61 =—(B„SJ/8J) ' (d, keeps shrinking with time [see
also Fig. 2(d)]. Here, 6J:—J—Jo. This sublayer is also
visible in the profile of F across the X point [Fig. 1(d)].
The contraction of this sublayer is extremely rapid in

time, as shown by the graph of B F/Bx versus y for x=0
and several times in Fig. 2(b). At t = 125, it has become
so narrow that it can no longer be resolved by our trun-
cated Fourier expansion, and so the simulation is stopped.
Also shown in Figs. 2(a) and 2(c) are the profiles of 6y
and of v~ =By/Bx along the reconnection line (x =0) at
various times, from which it is clear that only a limited
number of Fourier harmonics along y are involved in the
early nonlinear evolution. Contour plots of p, y, J, and F
are shown in Fig. 3. Note that the convection cells retain
approximately their linear shape well into the nonlinear
phase [Fig. 3(a)]. Also note the development of a current
sheet around the reconnection line [Fig. 3(c)] and the
preservation of the topology of the isolines of F [Fig.
3(d)]. Finally, Fig. 4 summarizes the time behavior. It
is remarkable that the mode growth remains very rapid
throughout the simulation. Indeed, the growth of p, as
well as that of 6'y and BJ at the X points, accelerates in

the early nonlinear phase, which is symptomatic of an ex-
plosive behavior. However, the mode growth slows down

when ~ approaches L„, as we have observed in a simula-
tion with d/2L» =0.08 (not shown here).

The fact that the spatial structure of the stream func-
tion does not vary significantly with time throughout the
linear and early nonlinear phases suggests the ansatz
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FIG. 4. Time dependence of By and BJ at the X and 0
points, of v ( —L„/2, 0) and of vy(O, Ly/2).

FIG. 3. Contour plots at t = l20: (a) p; (b) y; (c) J; (d) F.

tion. We assume u«vp and B„u—vpt)„g, which is con-
sistent with the near constancy in time of the width of v

across the reconnecting layer [Fig. 2(d)], as well as that
of the ratio vy(O, Ly/2, t)/v, ( —L„/2, 0, t) (Fig. 4). These
assumptions allow an analytic treatment of the system of
Eqs. (1) and (2).

The collisionless Ohm law (2) can be integrated exact-
ly to yield F=Fp(xp), where xp(x, y, t) =x —((x,y, t) is

the initial position of a fiuid element situated at (x,y) at
time t and ( is the displacement along the x direction
defined by the equation dg/dt =v„, g(t = —~) =0. The
latter equation can be integrated using the methods of the
characteristics. At y=0, where v~ vanishes, using the an-
satz (4) where u(x, y, t) can be neglected, we find

t x—„„dx'/g(x') = vp(t')dt'—=X(t) . (5)

The function ) (t) & 0 represents the amplitude of g out-
side the reconnection layer, where g(x) = 1. In the
linear phase, —

itr =k(d. When k & d, the magnetic
island width w —2k, so that the early nonlinear phase can
also be characterized by the inequality d & X & L„, or al-
ternatively tp & t & tD, with k(tp) —d and tD the charac-
teristic turnover time of the macroscopic eddies in I ig.
3(a).

Equation (5) can be inverted to obtain xp=xp(x, t)
Again, we use the ansatz (4), in particular the assump-
tions d—= (dg/dx)„p —d and g 1 for x & d. In the
limit d & X, & L, the time-dependent scale length is
found,

6'(t) =d exp[ —7 (t)/d],

such that xo has the following behavior around y=0:
xp —(x/8)d for )x~ & 6; xp —[X+dln( x /d)] sgn(x) for
d ) ~x) ) 8; and xp —) sgn(x)+x for x & d. Thus we
see that near the X point along the x direction, F(xp)

yx—= y(0, 0, t) —1
——,

'
X (t),

go= y(0, +' Ly, t) -1+0(d2) .
(7)

Let us set F=Fp(x)+SF. Then, Sitf+d28J =&F, and
at x=0, where SF=0, we find pJ= —gy/dz. Thus we
have demonstrated that an asymmetry develops in the
values of 6y and of J between the X and 0 points. The
spike of the current density at the X point has an ampli-
tude BJ„-0.5(k/d) .

Let us now integrate the vorticity equation (1) over the
quadrant 5:[0~x ~ L„,0~ y ~ Lyl, such that f~b&, U]
& dx dy =0. Using Stokes' theorem, we obtain

8,) Udx dy =
II~ Jdy, (8)

where C is the boundary of S. With the ansatz (4), and
neglecting corrections 6(ekd) contributed by t)yp, we
find

t) „I (B„p)dxdy = —(4coc /k d)d A,/dt

(and hence J) varies over a distance 6(t) which becomes
exponentially small in the ratio X/d. Conversely, around

Ly 7l
—X in Eq. (5). Then, xp (d for ~x~

and F fiattens over a distance ~x~ —k from the 0 point.
We stress that the formation of a sublayer is the com-
bined result of the conservation of F on each Auid ele-
ment and the Aow pattern around the X point, which acts
to increase the local curvature of the F profile [Fig. 1(d)l.

Next, we obtain an expression for y by integrating
the equation llew+ d J =F, where we can approximate2

J= —8, y. Using as asymptotic boundary condition the2

matching of 6'y to the linear solution for k & jx ~
& L„, we

obtain y(x, y, t) = 2 f— e " "F(x',y, t)dx', where
x—=x/d, which shows that

iver has an integral structure
such that any fine scale variation of F is smoothed out
over a distance —d. Asymptotic evaluation of y at the A
and 0 points in the early nonlinear phase gives
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where cp=d/d and c~(t) =1+ (d/cpt p)(8 u)~ is a factor
of order unity, which depends weakly on time [e.g. ,
1 ~ c~ ~ 1.4 in Fig. 2(d)]. Exploiting the re]]ection sym-
metry with respect to x =L„/2, y =Ly/2, the second in-
tegral in Eq. (8) can be written as

f Ly

Ilt Jdy= —2J dy(Jtlsy) =P

&Lx—2 J' d [(a,'~)(a.~)] =o.

The first integral on the right hand side (r.h.s.) can be
evaluated exactly:

f Ly

dy(Jt) y) =p =~ye ~go (8yx 8yo)/2d

(10)

The second integral gives a contribution of order JN(.
. X,

which is negligible when A'd —8d/nk & 1, and which is

significant only in the linear phase when h, 'd —1.
Interpolating between the leading linear and early non-

linear behaviors of the r.h.s. of (10) [i.e. ,
—(8/x)'l kd

and —X /8d, respectively], and inserting this and (9)
into (8), we obtain an equation for the evolution of
) (r) =—)I.(r)/d:

d~7/dt =X+c2X

where t = yL t and cz = 1/16cpc ~
& 0 can be taken con-

stant. The solution is X(t) = [(1 —a)/(I —ae ')] e',
where a =P —(P —1)', P =1+5/c2, and we have
chosen the time origin so that ).(0)—= 1. Thus, once the
early nonlinear regime is entered, X(t) accelerates
and reaches a macroscopic size over a time,
—ln(a ' ))l ', of the order of the linear growth time.
As we remarked earlier, we can expect this quasiexplosive
growth to cease as k approaches I. .

In conclusion, collisionless reconnection in regimes
where the instability parameter 6' is large and macro-
scopic convection cells develop does not follow the stan-
dard Sweet-Parker scenario [8,9]. ln these regimes, we

find an early nonlinear phase, characterized by a magnet-
ic island larger than the skin depth but smaller than the
size of the convection cells, during which reconnection
proceeds faster than exponentially. Physically, the flow

rotation accelerates following the intensification of the
electromagnetic torque fc J&&B dl= fcJdy during the
early nonlinear phase. This torque is mainly contributed
by the average J,B force between the X and 0 points
within a magnetic island, corresponding to the integral of
Eq. (10). The formation of a current spike narrower
than the skin depth, already noted in Ref. [11], is here
found to be the consequence of the conservation of the

parallel canonical momentum on moving fluid elements
and the flow pattern around the X point. The diflerent
conclusion of Ref. [11],i.e. , that reconnection slows down
in the nonlinear regime, may be due to a ratio of the skin
depth to the macroscopic scale length close to unity used
there. Indeed, a suitable separation between the skin
depth and the macroscopic scales is needed to explore the
early nonlinear phase. The spike formation was also con-
jectured in Ref. [7], although its consequences on the
reconnection dynamics were not worked out.

As an extremely narrow current spike develops during
the reconnection process, the electron distribution func-
tion tends to become highly distorted and one can think
of instabilities which would limit this tendency, introduc-
ing an eA'ective ("anomalous" ) current diA'usion. Clear-
ly, a refined model is needed to describe this for realistic
experimental parameters, with eAects such as the finite
ion Larmor radius, density and pressure gradients, 3D,
etc. , likely to play an important role. Nevertheless, we
believe that the present analysis opens the possibility to
understand the rapidity of relaxation processes observed
in low collisionality plasmas.
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