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A model one-dimensional drift-wave equation driven by a sinusoidal wave is used to study controlling
chaos in partial differential equations. By injecting negative feedback through a monochromatic wave or
pinning at a certain x-space point we can successfully stabilize unstable steady states and control chaos.
In the case of bistability, an unstable steady state in the middle branch can be also stabilized by these
controlling approaches. The methods used in this Letter can be applied to general continuous spatiotem-

poral systems.
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Recently there have been considerable efforts to control
chaos [1-8]. Among various approaches feedback con-
trol turns out to be particularly interesting [1-4,7,8].
However, most of the works have focused on temporal
systems. Since the dynamics of spatiotemporal systems is
more complicated and richer, it is an important step to
extend the study of controlling chaos to systems described
by partial differential equations, which are extensively
used in the study of chaos in hydrodynamics, plasma
physics, laser physics, and so on [9,10]. The present
Letter attacks this goal by numerical simulations.

We use a one-dimensional nonlinear drift-wave equa-
tion driven by a sinusoidal wave as our model [11,12],
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The system is, in its own right, important in plasma phys-
ics and nonlinear science [11-14]. In Eq. (1), a 2n-
periodic condition [¢p(x +2x,) =¢(x,1)] is used. Setting
z=x— Qt, we can rewrite Eq. (1) in the frame of the
driving wave as
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Throughout the Letter we fix the dispersion and dissipa-
tion as a= —0.287, y=1.0, and the coefficients of the
gradient and nonlinear terms as ¢=1.0, f=—6.0. The
strength and frequency of the driving wave, € and Q, are
the only changeable parameters. An integral E(¢), which
is the well known energy of the system,

2
E(z)=§fo %[q)z(x,t)—a(pf(x,t)]dx, 3)

is conveniently used to monitor the dynamics of the sys-
tem. By setting 8/87 =0 we can get a steady state solu-
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tion of Eq. (2), ¢=¢(z), which is a running wave in x
space, ¢(z) =¢(x — Q1).

It is convenient to divide the solution of Eq. (2) into
two parts, ¢(z,t1) =¢(z)+8¢(z,¢) and to expand 8¢(z,1)
as 8¢(z,t) =limy_ wXf=1bx (t)cos(kz+ a;(¢)). Equa-
tion (2) for 8¢ can be transformed to a set of ordinary
differential equations
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FIG. 1. Asymptotic motion of Egs. (4) is chaotic for
Q =0.65, ¢=0.2. (a) SE(t) vs t. (b) Trajectory in the b,-b,
plane.
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bk(l)=Nk(t), ar (1) =M, (t);
here
k
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where A4y and 6, are given by the steady solution
#(z) =limy— w2 =1 Ax cos(kz +6;). In numerical sim-
ulations NV is chosen such that the modes kK > N have
negligible influence on the dynamical behaviors. For in-
stance, at @ =0.65, €=0.2, Eq. (2) has three steady state
solutions. We focus on the steady state with the lowest
energy E. An algebraic computation shows

A;=0.11,...,4s=18x1073, ..., 4;3=1.8x1077.

Therefore, high modes play a negligible role. For the pa-
rameters chosen, N =13 is a very good approximation,
therefore a set of 26 ordinary differential equations is
dealt with in this Letter. /N’s up to 20 have been tried
and give no visible change either to the steady solutions
or to the time-dependent behavior of the system. At the
given Q,€ values the above mentioned steady state is un-
stable, and the motion of the system is chaotic. In Fig. |
we run Egs. (4) by taking the initial state in the vicinity
of the given unstable steady state. Figure 1(a) shows §E
=E(¢t)—E vs t. The energy changes with time violently.
In Fig. 1(b) we plot the projection of the stationary tra-
jectory of Egs. (4) in the b;-b, plane. The motion is ob-

I

J

Ek(t)=Nk(t)—7»gk(t) ar () =My () —Ahi (2)

gk(t)— Z bi()cosl( — k) (xo—

hk(t)— Z by ()sinl( — k) (xo—

Q)+a —arl,

Qt)+a —ail/bi, k

viously chaotic.

A direct way to stabilize ¢(z) is to force Eq. (2) by a
negative feedback —Alg(z,1) —@(z)]. However, this
feedback is difficult to realize practically since one has to
monitor each point in x space (or each wave in k space)
and respond to the system changes everywhere (or for
every wave number). There are two convenient ways to
control the system: The first is to monitor a single mode
(e.g., k=i) and then to input a monochromatic wave
—Ab;(t) to control the system; the second is to monitor a
local region in x space and to apply feedback to the sys-
tem in this region (a practical way may be to add a term
like —/xr)lp(x,t) —d(x — ar)lexpl— (x —xo)%/rl,
0 <r <« 1; for numerical simplicity we can take the limit
r—0 and use —A8(x—xg)lp(x,1) —¢(x —Qr)]; the
essence of the control is not changed by this limit). In
the former case the ith equation in Egs. (4) is changed to

bi(t)=N;(t)—ab;(1)/(1 —ai?), (5)

and all the other equations for b x;(z) and ax(z) remain
the same as in Eqs. (4). In the latter case Egs. (4) are
replaced by

(6)

=12,...,N.

Of the feedbacks Egs. (5) and (6), one is a local input in the wave number space, the other is a local input in x space.
To perform a local control in x space, one can insert an electrode at a given point xo. However, for k-space control one
has to make a spatial Fourier transformtion of the field, and work out variations of the desired harmonic wave. Thus,
monitoring in k space must be more difficult than in x space. Nevertheless, as for response to the system, it would be
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FIG. 2. Feedback is applied as in Eq. (5) with i=2, A=1.0
for (a)-(c), i=3,A=1.0 for (d); @ =0.65, €=0.2. (a) SE vs t.
(b) b2(2) vs t. The forcing approaches zero as t — oo, (c) Tra-
jectory in the bi-b, plane. (d) Trajectory in the b,-b2 plane
when i =3 is feedbacked. In this case ¢(z) is still unstable while
chaos is replaced by a periodic motion.

sufficient in certain cases to inject one or few harmonic
waves, as can be seen in the following, that may be easily
performed.

Let us first control the system with Q =0.65, ¢=0.20
by injecting a monochromatic wave [i =2, A=1.0 in Eq.
(5)1. In Figs. 2(a) and 2(b) we plot 6E,b,(t) against ¢,
respectively. In Fig. 2(c) we show the trajectory in the
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FIG. 3. The system is controlled by using Egs. (6) with
x0=0, =0.2; 0=0.65, ¢=0.2. (a) 8E vs t. (b) ¢(0,1)
—¢(x—Q1)|x=0vst.

b)-b, plane. The initial state is far from the steady state.
By injecting the monochromatic wave the system eventu-
ally approaches the aim state and the chaos is completely
controlled. The perturbation is reduced to zero as time
increases. It is remarkable that the unstable state of such
a 26-dimensional system can be stabilized by forcing a
single equation, and the chaotic motion of the partial
differential equation can be controlled by simply input-
ting a single wave. We have tested many different pa-
rameters. There are various typical responses of the sys-
tem to the external forcing acting on different wave num-
bers. First, there may be only a lower threshold of A, say
A=A., such that when A >4, the steady state is always
stabilized. This is the case for Q =0.65, ¢=0.20, if we
simultaneously input two modes, —Ab;(t)/(1 —ai?), i
=1,2, to the first and second equations of Egs. (4),
respectively. Second, there are both limits A, and Ay,
such that the atom state can be approached only if
Ay > A > Ar. This is the case at the same Q,¢ as we input
the monochromatic wave of either i =1 or i =2. Fori=1
we find A = 0.5, Ay = 3.0. Third, the reference state
can never be stabilized whatever A is. This is the case if
we feedback the system in Fig. 1 with a single mode
i = 3. We expect that injecting multiple waves might be
necessary for controlling chaos if more unstable modes
appear at the reference state. Nevertheless, the number
of injecting waves can be much less than the system di-
mension. The response of the system to the feedback is
very interesting even if the forcing fails to stabilize the
reference state. At different parameter combinations and
forcings we have observed very rich patterns such as
steady states (not the aim state), periodic motions, quasi-
periodic motions, and so on. In most of the cases the
chaos level of the system is effectively reduced though the
reference state remains unstable. For example, in Fig.
2(d) we take the same €, €, and A as in 2(c) while feed-
back to the system is via the mode /=3, and plot the
asymptotic trajectory also in b;-b, space. A perfect
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FIG. 4. Controlling of the middle branch. (a) Es vs ¢ for
Q@ =0.56; the middle branch is unstable. (b) 6E =E(t) —E vst
without control, © =0.56, ¢=0.07 [the cross in (a)l; here E is
the energy of the middle branch. (c) 8E vs t with control of
Egs. (5) (i=2, A=1.0), ©=0.56, ¢=0.07. The system is
locked to the middle branch eventually.

periodic motion is introduced by the forcing.

Now let us control chaos by using Egs. (6), i.e., by pin-
ning the system to the reference state at x =xo. We take
x0=0, A=0.2, and plot SE(:) and ¢(0,1)—¢(x
— Q1)|,=0 against ¢, respectively, in Fig. 3(a) and 3(b).
Again it is found that the pinning very effectively stabi-
lizes the unstable state and controls chaos. Two points
are worthwhile marking with respect to the pinning.
Usually in inhomogeneous cases the efficiency of pinnings
depends on the choice of xo. Thus it is interesting to in-
vestigate the influence of pinning position on controlling
chaos and to find the most effective pinning point. How-
ever, in our model the pinning effect is independent of the
choice of x¢ due to the symmetry of Eq. (2). Second, for
the x-space pinning there is only a lower threshold for
A(=A.). As A=A, the pinning can always successfully

stabilize the aim state. Actually, the larger the A, the
better the controlling. This fact makes the x-space pin-
ning particularly convenient. To our knowledge, our
simulation is the first example of using a pinning tech-
nique to control chaos. This technique may be used in
both theoretical analysis and experimental works.

Bistability is a very important topic in physics, chemis-
try, biology, and so on. Usually, one gets an S-shaped
solution curve, the upper and lower branches are stable
and the middle branch unstable. In Fig. 4(a) we take
Q =0.56 and plot E against ¢. Here E is the energy of
the steady solution of Eq. (2). The dotted line is unsta-
ble, the corresponding reference state and energy are
denoted by ¢(z) and E, respectively. From the physical
point of view, it is very useful to make the middle branch
stable by a very weak controlling. Without controlling, in
order to drive the system from the lower (upper) branch
to the upper (lower) branch one needs large perturbation
to overcome the middle barrier. If the middle state is sta-
bilized by a weak feedback we can rather flexibly realize
the lower or upper state by taking off the feedback and
switching on a small pushing up or down. This idea is
realized in our case by using both Eq. (5) and Eq. (6). In
Figs. 4(b) and 4(c) we use Eq. (5) and plot 6E =E (1)
—E vs t for €=0.07 [the cross in Fig. 4(a)l, i=2, with
A =0 and A=1.0, respectively. Without controlling the
middle branch SE =0 is unstable [Fig. 4(b)]. With the
controlling the system is eventually locked to the middle
state though the initial condition is far from the aim state
[Fig. 4(c)).
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