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Trace Formula for Riemann Surfaces with Magnetic Field
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The Maass operator for automorphic forms is interpreted as the Hamiltonian of a charged particle
moving in a constant magnetic field on a Riemann surface of constant negative curvature. A careful
analysis of the classical trajectories in the presence of the magnetic field shows that the action on a
periodic orbit is related to the action on a free periodic geodesic. This identification provides a semiclas-
sical interpretation of the Selberg-Maass trace formula for automorphic forms.

PACS numbers: 05.45.+b, 02.20.—a, 03.65.Sq

The free motion of a particle on a two-dimensional sur-
face of constant negative curvature has attracted wide at-
tention among physicists in the last few years. It provides
one of the simplest examples of a dynamical system with
a classical strongly chaotic behavior. From a quantum
point of view, one of the interests of this system is that
the semiclassical trace formula of Gutzwiller and Balian
and Bloch [1], which is an asymptotic formula relating
the classical periodic orbits to the quantum energy spec-
trum, coincides with the exact Selberg trace formula
[2,31. However, these formulas have different origins:
The Gutzwiller one is based upon semiclassical considera-
tions and the Selberg one upon a group-theoretical
analysis [3,4]. The exactness of the semiclassical formula
is striking, since it is built from the Van Vleck propaga-
tor, which is by no means exact on such surfaces.

It is also possible to investigate the case of a charged
particle coupled to an external uniform magnetic field.
Recent interest in this problem was raised by its possible
relevance to the physics of persistent currents in meso-
scopic rings [5] and of the quantum Hall effect [5,6].
From a more formal point of view, this problem can be
related to the factorization of determinants of generalized
Laplacians and to multiloop calculations in fermionic
string theories and random surfaces [7]. As far as quan-
tum chaos is concerned, it is interesting to investigate
spectral properties of chaotic Hamiltonians coupled to a
magnetic field [8]. In particular, quantum scattering
properties can be unaA'ected by the presence of a rnagnet-
ic field [9,10].

Generalizations of the Selberg trace formula in the
presence of a magnetic field (Selberg-Maass trace formu-
la) are well known in the mathematical literature even
though the physical interpretation is obviously lacking.
In the Selberg-Maass formula, one considers a general-
ized Laplacian acting on automorphic forms of weight m.
It is immediately seen that this operator is identical to the
Hamiltonian of a charged particle in the presence of a B
field. The weight of the automorphic form is related to
the field strength m =28 [4,7].

Quite surprisingly, the Selberg-Maass formula is al-
most the same as in the absence of the magnetic field, up
to phase factors which can be interpreted as coming from
the eAect of isolated vortex lines. This result is amazing,

since a magnetic field [11]changes drastically the classi
cal dynamics of the system.

The main purpose of this Letter is to solve this paradox
by interpreting the Selberg-Maass trace formula as a
semiclassical formula. More precisely one shows that the
action of a particle on a periodic orbit in the presence of a
B field is equal to the free action on a free geodesic orbit,
the latter being at constant distance from the former.
Results will only be sketched, and details will be pub-
lished elsewhere.

Riemann surfaces of constant negative curvature are
built from the infinite surface of constant negative curva-
ture, as the plane torus is built from the plane. A repre-
sentation of this surface, the Poincare upper half plane
[12], is the complex upper half plane /t' =[z =x+iy~y
&0] with metric (ds)'=[(dx)'+(dy)']/y'. The geo-

desic distance d between two points z;,zf is given by

coshd(z;, zf) =1+ [(xf—x;) +(yf —y;) ]/2y;yf .

(Note that infinity is either a point of the real axis or the
point y ee. )

The free geodesics on & are either half circles or
straight lines orthogonal to the real axis y =0. The
isometrics, i.e., transformations which preserve the dis-
tance, give the symmetry group of P. Direct isometrics
correspond to the transformations z (az+b)/(cz+d)
with a, b, c,d C R, which can be represented by real 2 x 2
matrices with a determinant one, i.e. , elements of
SL(2,R). One gets a Riemann surface by taking some
discrete group of isometrics I [whose elements y are in
SL(2,R)], which corresponds to a finite area domain

whose sides are identified by elements of the
group. Trajectories on this surface are built by following
free geodesics of the Poincare upper half plane on disjoint
copies yP of the tiling of &.

From the Laplace operator 6 =y (8 +8~) one defines
the free quantum Hamiltonian H= ——,

' 6 (in suitable
units the mass of the particle is set equal to 2). It acts on
wave functions y(z) which are invariant under the action
of the group I; i.e., y(z) =yr(yz) for y 6 I .

One can build trace formulas either in the energy or in
the time representation, starting, respectively, from the
energy Green's function or time propagator. Here we
will work in the time formalism, but all results can be
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easily translated to the energy one. On these surfaces,
there are two trace formulas which coincide. The
Gutzwiller trace formula for chaotic systems with un-
stable periodic orbits relates the partition function
Tr[exp( —tH)] to a sum over classical orbits. It is a
semiclassical asymptotic formula in the Planck's constant
derived mainly by stationary phase considerations. The
Selberg formula is an exact relation valid only for con-
stant negative curvature surfaces that expresses the parti-
tion function as a sum over conjugacy cl'asses of I . It is
derived by pure group-theoretical considerations. The
Selberg and Gutzwiller formulas can be identified be-
cause of the one-to-one correspondence between the hy-
perbolic conjugacy classes of the group and the classical
periodic orbits of the system.

Consider a Riemann surface corresponding to the
group I . First one has to find the periodic orbits (PO) of
the system. One can show that the only way to get a PO
is to construct an invariant geodesic under the action of
some group element y 61. To see more precisely which
geodesic it is, one can use the frame in which y is diago-
nal and acts as a dilatation. The unique invariant geo-
desic is the imaginary axis of the upper half plane. In
this frame one also gets the relation between the trace of
y and the length l of the PO Tr(y) =2cosh(l/2). Two
invariant geodesics can give rise to the same PO; this
redundancy is avoided since there is one and only one PO
by conj'ugacy class of the group I (we recall that two ele-
ments y], y2 6 I are in the same conjugacy class if and
only if there is some y in I such that yy) y

' =@2).
Having the PO and their lengths, one can turn to the

semiclassical analysis leading to the Gutzwiller formula.
The classical action on a trajectory spanned at a constant
speed JC, starting at time r; from the initial point z;
=x;+I'y; and ending at time TI at the final point zy
=x/+iy/, is simply S(z;, r;~z/, r/) =Cr where z =rI

Since the geodesic distance d(z;, zl) between z;
and zI is d(z;, zl) =JCr, one gets S(z;, r;~zl rf)
=d '(z;, z/)/r

Then one integrates the semiclassical (Van Vleck)
propagator over the whole domain by means of the
stationary-phase approximation. The result is a sum of
exponential terms, each of them associated with a PO,
whose argument is the classical action and whose ampli-
tude is related to the monodromy matrix. In this case,
this reproduces the Selberg trace formula [strictly speak-
ing the last term (so-called Weyl term) does not follow
from these considerations]

—iH ~ ~ —i/i6 —p d /re
yprim p= i sinh(pd/2) 4g~r

W(rz)=Z()) ~"+
~

)t (z), (2)

where g(y) is a set of phase factors known as a multiplier
system of I; they can be viewed as coming from magnetic
Aux lines going through the holes of the surface. From
the Dirac quantization condition BV=2trm (m integer)
[S] and the Gauss-Bonnet relation V=4)r(g —I ) (g is the
genus) it follows that 8 must be rational. For noninteger
8 it is known that g(y) cannot be taken as trivial [4].
This implies that in this case the Selberg theory can be
applied only if one adds to the system a set of magnetic
fiuxes corresponding to these nontrivial g(y).

The theory of automorphic forms on compact surfaces
without elliptic points leads to the Selberg-Maass trace
formula [4,7]:

+ e ' ' (be ' tanhtrb)db.
2R &0

Here one considers primitive orbits of length d, which, in

the Selberg formalism, correspond to hyperbolic conjuga-
cy classes of group elements whose trace is 2cosh(d/2).
All repetitions are indexed by the integer p. The term
r/16 in (1) is a Riemannian correction needed to get the
correct semiclassical limit for the free propagator. V is
the area of the domain.

One can add a magnetic field on the Poincare upper
half plane. In suitable units, the classical Lagrangian of
a charged particle in the presence of the B field in the
gauge A~ =0 reads L =(x +y )/y =Bx/y. The corre-
sponding Hamiltonian is H= —

4 [y (I)„+r)~)+2iBy(I„
—8 ]. The classical and quantum analyses have been
performed in [11,13]. Classically, one has two types of
trajectories: closed circles which do not intersect the real
axis (the particle is trapped) below ED=8 /4+ —,', , and
Euclidean circles or straight lines which intercept the real
axis with an angle a depending on the magnetic field and
the velocity (the particle escapes at infinity) above Eo.
At the quantum level, this duality manifests itself in a
spectrum with a discrete part (Landau bound states)
below Eo and a continuous part (scattering states) above.
Therefore, the net eAect of the magnetic field is an addi-
tional finite set of discrete Landau levels.

On a Riemann surface the Hamiltonian now acts on
automorphic forms of weight 2B which transform as
[4,S]

' 2B

rH — g (28 2m 1)e —I —m(m+ i)+B(2m —1)lr/4
4& 0 ~ m & B —1/2

OO —b 2r/4
+ ''"+ '" db h2zb2~' cosh2trb+ cos2trB

—i/i6 1 (p 2d 2/r +B2~/4)e
rprim p=i sinh(pd/2) 4Jtrr
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where V is the area of the fundamental domain and the
last sum is still over hyperbolic conjugacy classes whose
elements have trace 2coshd/2. From this formula one
infers that the bound state part of the spectrum is not
alTected by the domain, whereas the continuous part of
the spectrum becomes discrete. This is reAected in the
classical dynamics where a trapped particle does not feel
that the domain is compact, but where some trajectories
escaping at infinity on /t' become periodic on the
Riemann surface. The dynamics is integrable below Ep,
as on the upper half plane, but it is strongly chaotic above
Ep.

In the sequel, one concentrates on the "chaotic" part of
the spectrum (since the "integrable" part of the spectrum
yields a finite sum on both sides of the Selberg formula).
Apart from the phase factors g() ), the last term of (3) is
essentially identical to the free case 8=0 (1). The first
question to ask is if the sum over conjugacy classes still
corresponds to a sum over PO. As before, one must find
for every y of the group the geodesic invariant by its ac-
tion. By using the frame in which y is diagonal, one finds
I~o invariant geodesics, namely, the two straight lines in-
tercepting the real axis with the angle a. They can be
spanned in only one way, due to the breaking of the time
reversal symmetry. This gives a one-to-one correspon-
dence between PO and conjugacy classes, since y is asso-
ciated with one geodesic, and y

' with the other.
This analysis shows that to each conjugacy class of the

group one can associate a PO, as in the free case. Never-
theless, this orbit is distinct from the free one, with a
diferent length I such that 2cosh[(l sina)/2] =Tr(y).
Therefore lsina=d in (3).

I n order to understand the Selberg-Maass formula
from a semiclassical point of view, let us look more care-
fully at these PO in the frame where y is diagonal. The
positive imaginary axis corresponds to the two periodic
orbits of the free case (same geometrical orbit, but
spanned in two different directions); the two straight lines
with angle a with the x axis correspond to the two period-
ic orbits of the case with magnetic field [see Fig. 1(a)].
(They are in fact hyperbolic circles. ) The PO are
spanned between a given point z and its image yz.

Is there some relationship between these two types of
orbits? It turns out that there is a suitable projection of

4,
'a)

FIG. l. (a) The invariant geodesics for a diagonal isometry
(a dilatation): The y axis is the geodesic for 8=0; the two ob-
lique lines correspond to the case 8&0. The mapping Z Z' is
given by the projection along the circle. (b) The same for an
arbitrary isometry: The three thick-lined circles are the three
invariant geodesics (the one between is the 8=0 one); the
thin-lined circle gives the mapping.

the two oblique lines which yields exactly the free PO
(see Fig. 1). More important, the action of the PO with
magnetic field only diAers from the free action on the
projected orbit by a constant shift. The lengths of the
two orbits are diferent; nevertheless the actions are the
same (up to a constant shift).

Let us show how this happens in general. The classical
trajectories are parametrized by [one denotes by x',y',
r'(x, y, r) the space-time coordinates on a trajectory in
the 8 field (8=0)]

JC 8'sinhr' JC
X =Xp+

8+8'cosh r 'JC
2C 1

8+'8csoh'AC

(4)

(s)

where 8'= JB +4C. They represent Euclidean circles
centered at [xo, —8/2K], of radius R'=48 +4C/2K
spanned at constant speed vB +4C/2 and intersecting
the real axis at an angle a, with tana =2& C/B.

The action of a particle in a 8 field between the initial
point z at time z and the final point zy at time r~ is
found to be

I I I I 8 g
8'+ 8 cosh r~JC

ran+8 arcsin —[r~ r,.']
4 8+8'cosh rIJC

p
case of trajectories in a 8 field one has

h
r'MC

cosh"2
y=

. „r'JC

Such an identification has to be accompanied by a gauge
transformation. The vector potential is not invariant un-
der the isometrics of i'Y. As discussed in [10], invariance
is implemented only in a weak sense, namely, A„(yz')
=A„(z') + |)„'A(y, z'), where A(),z') =28 arg(cz'+ d ).

In order to compute the action, one has to define care-
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fully the line integral fA„(dx"/dt)dt on a trajectory. By
a choice of suitable transition functions [14], this
amounts to canceling the arcsin term in the action (6).
One finally obtains the "free" action S(z, r,'~zf, rf)
=(C —8 /4)r'. One can proceed further by showing
that this is the free action on a geodesic spanned at a
given distance from the B&0 trajectory initially con-
sidered. Indeed, consider again the solutions of the equa-
tions of motion given above. One has a family of circles
indexed by the parameter B with the same points at
infinity z~ =zl =xo —JC/K, z2 =z2 =xo+ JC/K. All of
them are invariant by the same y (7). If z is any point on
the circle 8 =0, then one can find a mapping z'(z) where
z' is on the BWO circle 8 such that d(z, z') is a constant
[see Fig. 1(b)]. It reads

One verifies that coshd(z, z') = I/sine is indeed constant.
Also, in terms of r' parametrization ([4) and (5)], this

mapping implies r'=z; thus 5(z, z ~zf zf) (C 8 /
4)r. But this action is precisely the free action on the
8=0 geodesic from point z;(z ) at time z;=r to the
corresponding point zf(z/) at time rf = zf'.

From this semiclassical analysis it follows that the evo-
lution operator Tr(e " ) is controlled by an infinite sum
of terms of the form pa~exp(ip d /r —iB r). There-
fore the trace of the heat kernel Tr(e ' ) can be readily
obtained by the analytic continuation ~ i~. One there-
fore recovers the free action p d /z+8 z that appears
in the trace formula (3).

Monodromy considerations will be identical for both
trajectories, since they stay at a constant distance during
the time evolution. In fact, orbits with magnetic field are
built from free geodesics by attaching a rigid segment to
the particle moving on the free orbit. In the trace formu-
la, the amplitude for a given orbit, which measures its
stability, is obviously not aA'ected by this rigid shift.
These considerations imply that the semiclassical analysis
for the B field is identical to the free one.

These results also hold for surfaces with elliptic points
or infinite "horns" (noncompact surfaces such as Gutz-
willer's leaky tori) as far as one is concerned only with
the PO sum. They shed some light on the result known
for a long time by mathematicians and pointed out in [5]:
The "chaotic" spectrum of an integer 8 field [for which
one can take g(y) =1 for all y] can be obtained from the
free spectrum by a shift of 8 /4.

There is a conjecture [15] that spectral fluctuations for
chaotic time reversal invariant systems obey Gaussian or-
thogonal ensemble (GOE) statistics, whereas they obey
Gaussian unitary ensemble (GUE) statistics when the
time reversal symmetry is broken. In the case at hand
the integer magnetic field shifts the spectrum [4,5]; thus
the fluctuations are GOE type, despite an explicit break-
down of time reversal symmetry. This is quite puzzling,
since [161 GOE spectral fluctuations with no time rever-

sal symmetry should be connected with antiunitary sym
metrics. Here the only thing one has proven is that
periodic orbits are degenerate in length. This is usually
not sufficient, but we have at our disposal an additional
piece of information, namely, that the trace formula is
exact. Thus periodic orbits give complete information on
the spectrum. This peculiar situation explains the anom-
alous statistics: The PO doubly degenerate in length
mimics the PO of a time reversal invariant system. This
can be generalized to any magnetic field provided the
character g verifies g(y) =g(7 ') for all 7 in the group.

In conclusion, for a constant negative curvature Rie-
mann surface with quantized magnetic field (i) the
Gutzwiller trace formula is exact and coincides with the
Selberg-Maass trace formula; (ii) there is a one-to-two
correspondence between the classical periodic orbits with
and without magnetic field. To each free periodic orbit
correspond two periodic orbits of the problem with mag-
netic field, each of them being at constant distance from
the free PO; and (iii) this correspondence also explains
why there is no transition from GOE to GUE when add-
ing an integer magnetic field.
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