
VOLUME 71, NUMBER 23 PHYSrCAL REVIEW LETTERS

Nonlocal Symmetry for QED

6 DECEMBER 1993

Martin Lavelle' and David McMullan '~

Institut fiir Physik, Johannes Gutenberg Uni-cersitat. Staudingerweg 7, Postfach 3980,
fV-6500 Mainz, Federal Republic of Germany

Dublin Institute for Advanced StudiesS, chool of Theoretical Physics, IO Burlington Road, Dublin 4, Ireland
(Received 31 March l993)

We demonstrate that QED exhibits a previously unobserved noncovariant, nonlocal symmetry. Some
consequences are discussed.

PACS numbers. 12.20.—m, 11.30.—j

Quantum electrodynamics (QED) is the cornerstone of
modern high energy physics. A generalization of its
gauge invariance is found in all other theories of nature.
In this Letter we shall show that QED displays a further,
quite distinct, symmetry.

In order to quantize QED gauge fixing is essential.
Working in Feynman gauge (as we shall throughout this
Letter) the Lagrangian is

X = —
4 F„„F"" (B„A—") +ilt(iH m)y+—icGc,

where D„=B„+i'„andthe ghosts are Hermitian. Al-
though the ghost fields decouple, they are retained in (1)
since it is this formulation of QED that can be extended
to non-Abelian theories rather than, say, the ghost-free
Gupta-81euler description.

As is well known the photon has 2, transverse, degrees
of freedom. However, in the covariant formulation (1)
all four components of the gauge field are present. One
can argue that the gauge fixing term has accounted for 1

degree of freedom, while the ghosts heuristically contrib-
ute 1 negative degree of freedom. Thus the full Lagrang-
ian (1) does indeed describe the interaction of fermions
with the 2 degrees of freedom of the photon. This line of
argument can be put on a firmer footing by exploiting the
Becchi-Rouet-Storg-Tyutin (BRST) invariance of the
QED Lagrangian.

The BRST transformations are [1]

SA„=B„c,8'c =0, Bc = iB„A", —

6+= EgclP', 8+= Ig(Pc,

and we note that the BRST transform of a field has in-
creased its ghost number by 1. The invariance of (1) un-
der these transformations can be sho~n in three steps:
The original photonic and Dirac Langrangians are each
separately invariant (reAecting the close connection be-
tween gauge invariance and BRST invariance), while the
gauge fixing and ghost terms together are invariant. One
of the most remarkable properties of the BRST transfor-
mation is that it vanishes when applied twice to any field;
b —=0. This nilpotency property can be seen from (2) us-

ing the (uncoupled) ghost equation of motion. (This reli-
ance on the equations of motion can be removed by intro-
ducing auxiliary fields as in Ref. [1].)

The BRST invariance of the Lagrangian (1) allows for
a succinct characterization of the physical states of the
theory. The transformations (2) are generated by the
conserved, Hermitian charge

Q -= d'x[ —trn(x)c(x)+tro(x)c(x)1,

where no:= —8„A". The physical states are then
identified with those states, (y), which satisfy Q[y) =0.
This is not the whole story, though, since the nilpotency
of the BRST transformation implies that Q =0; hence
any state of the form ) y) =Q)g), for any (g), will trivially
be physical in this sense. More properly, then, the physi-
cal states should be identified with the quotient of the
BRST invariant (closed) states with these trivial (exact)
states. %orking on the Fock space for this theory con-
structed out of the free fields (which are identified with
the asymptotic in and out states), it was shown in Ref. [1]
that the photonic sector of the physical states could be
identified with the states built from the transverse com-
ponents of the photon. Even in this Abelian theory this is
quite an involved analysis.

This Fock space discussion is only strictly relevant to
the free theory: %'hen matter is present the infrared
structure of the theory [2] implies that asymptotic states
which have an arbitrary number of photons in them must
be allo~ed. The direct extension of the arguments
presented in Ref. [1] to such coherent states is then not
clear.

This use of the BRST charge to characterize the physi-
cal states is famihar in mathematics and would be called
a cohomology theory —the physical states then being the
zeroth cohomology of the appropriate complex. Thus the
BRST charge is playing a role similar to the exterior
derivative, d, acting on difIerential forms. Mathemati-
cians have developed many techniques for analyzing such
structures (see, for example, Ref [3]), the most powerful
of which is to introduce an adjoint operation (denoted by
d* for the differential forms example). This is also nilpo-
tent and can be used to refine the description of the d
closed forms. It would be useful to have a similar adjoint
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to the BRST charge; however, it is not clear that such an
object can be constructed since, in addition to its various
algebraic properties, it must also be conserved if it is to
have any physical significance.

The anti-BRST transformation [1],b,„„-,is an example
of a type of adjoint to the BRST transformation. Its ex-
istence relies on the simple fact that the Lagrangian (1)
is invariant under the interchange e ic and e sc.
Acting on the fields b,„&,- essentially reproduces (2) but
with the ghost and antighost interchanged. Clearly this
transformation has the property that it reduces the ghost
number of a state by 1. However, its close connection
with the BRST charge, and hence the gauge invariance of
the theory, means that it has few of the useful properties
desired from an adjoint. In particular, it antieommutes
with the BRST charge, 8'b,„t,-+8,„t,-b =0; thus there is no
analog of the Laplacian dd*+d*d and the related har-
monic description of cohomology found in differential
geometry.

In Ref. [4] it was argued that, for simple quantum
mechanical systems, the appropriate concept of an adjoint
(or more properly, a dual) to the BRST transformation is
not one based on the existence of pairing between states
(as in the relationship between d and d*), but rather it is
a transformation that is compatible with the gauge fixing
conditions. An extension of that argument to QED would

suggest that we are looking for a symmetry transforma-
tion b of (1) such that, as well as decreasing the ghost
number of the fields by 1, acting on the gauge fixing con-
dition it gives 0:

S (a„~~)—=0.
(In a formulation with the auxiliary field pro, this condi-
tion could be replaced with the weaker condition that
zo+B„A is invariant. ) We say that relation (4) is dual
to the BRST invariance of gauge invariant quantities,
i e, dual to the relations b(4 F""F'„„)=0 and 8(lr(iH
—m) y) =0

The simplest way to ensure (4) is to take b Ao =ie and
b A; =i(8;do/V )c, where V =8;8; So we see that solv-

ing (4) forces us to abandon covariance and locality. The
lack of covariance in this transformation should not come
as too much of a surprise since we know that the two
transverse physical photonic states cannot be expressed
covariantly. Extending this transformation to the other
fields is far from unique; ho~ever, requiring that we have
a symmetry of (1) allows us to finally arrive at the set of
transform ations:

Bg Bo
b &o=ie, b &;=i ' e

where Jo is the current density yyoy. Just as was the
case for the BRST transformations this transformation
can be seen to be nilpotent, i.e., (b )—:0, with the aid of
the antighost equation of motion (Again this depen-
dence may be avoided by introducing an auxiliary field )

It is important to clearly spell out why this is a symme-
try of the Lagrangian (I ). By construction, it is now the
gauge fixing term that is invariant while the photonic and
Dirac parts of the Lagrangian need, in addition, the ghost
term to be invariant Under the transformation (S) the
Lagrangian (1) changes by a total divergence

where

A =iB eb c ieB 8—e,

8'&o
p2

Note that, due to the presence of the nonlocal, 1/V,
terms in A", we cannot immediately deduce from (6) that
this is a symmetry. This is because, in general, any trans-
formation of a Lagrangian can be written as a total diver-
gence if we allow nonlocal terms; i.e., we may always
write an arbitrary function F as F=8„[(8"/&)F].The
fundamental quantity in the quantum theory is the ac-
tion; thus we must now check that our transformation
indeed preserves the action.

Recall that we want to construct the action from the
Lagrangian (1) where

dt„dxL,
and we are calculating the action between two times
[Ti,Tq] and, for the moment, we have a spatial ball, 8„,
of radius r. %'e will want to take the r ~ limit, but we
will not need to take the [Ti,T2] [—~,~] limit. Un-
der the change (S) we get

S-S+A(V, ) —A(V, )+, dr, d'xa, -A',
4 TI 4+r

A(V )=, d'xA'(V, x). (10)

The A(T) terms now depend on the whole of the space
slices at the end points in time; however, this will clearly
not affect the dynamics between the initial and final
times. The last term is potentially dangerous since it will

alter the action between the end points, and thus could
alter the dynamics. %'e use Stokes' theorem to write

i ~0 g

2 BgC lP, b P =l/f
2 QgC,

L

(S) d x 8-A' = d cx- A' (»)
r

If the A"s were local this would tend to zero as r
since the fields fall off to zero at infinity. But since the
A"s are nonlocal, then even as r ~, they will receive
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contributions from the whole of the spatial slice—so (11)
might not vanish. However, we are dealing with terms of
the form

For all a this transformation will preserve the classical
equations of motion. However, the Lagrangian only
transforms into a total divergence without use of the
classical equations of motion for the specific choice a =1.

We now wish to analyze some consequences of this
symmetry. Given that this is a symmetry we can use it,
in much the same way as BRST is used, to generate
Ward type identities. So consider the identity

(T[Ap(x)c(y)]) —=0.

Applying 6 to this yields

(14)

tD(q)+Doo(q—)—,D;o(q) —g, Aoo(q) =0, (15)
q

where

D(q):= d'x e' t( T[c( x)c( 0)]),

D„„(q):=J d'xe""(T[A„(x)A„(0)]),

App(q):= d'x e""(T[xp(x)Jii(O)]) .

(16)

This is not one of the usual covariant Ward identities.
However, it is straightforward to check that it is indeed
fulfilled in QED in the Feynman gauge. The noncovari-
ance of this identity is a consequence of the noncovari-
ance of the symmetry and of the noncovariance of the
physical fields. A fuller account of the identities deriv-
able from this new symmetry will be presented else~here.

vs' y2 4& ~ s' Ix —
yl

Now as r ~, i.e., as x ~, for finite y we have
I/~x —y ~

0. This is not the case, though, if y and x are
close. But then, for large x, f(y) 0 since we demand
good boundary conditions on the fields. We conclude that
even though our symmetry is nonlocal, it is indeed a sym-
metry in the nontrivial sense.

Before briefly discussing some of the consequences of
this new symmetry, we note that its actions on the gauge
fields and fermions can formally be derived from the
BRST transformations (2) under the substitution c

ic/r)p and by using the equations of motion. The ac-
tion on the ghosts then follows from the required invari-
ance of the Lagrangian. It is not clear to us if this trick
sheds any light on this new symmetry. Indeed the use of
the classical equations of motion in a transformation does
not guarantee the invariance of the action. For example,
if the classical equations of motion are used then we can
also replace 6 c in (5) by

8;8o p Soap
6, e=gp —a 2;+ e — —

1 Jo.p2 Q p2

where the anti-Hermitian charge Q, which generates
the transformations (5), is given by

. ~o(x)
Q ~:= d'x i — c(x)+into(x)c(x)

p2

Combining these requirements we see that a physical
state will, in addition, satisfy

A'~phys) =0,
where the Hermitian Laplacian type operator JV is given
by

~:=QQ +Q Q. (2o)

Although this does not have all the properties one might
wish from a Laplacian, in that JVc =Ac =0, it does im-
pose additional restrictions on the photonic states and one
can show [5] that in the coherent space approach, the
physical states are built up from the transverse com-
ponents of the photon and the fields

8;W'(x)
itfphy (x) =exp ig y(x),

(21)
8;A'(x)

I//phyz(x)
=exp tg y(x)p2

which are Dirac's physical electrons [6].
In summary, we have found a new symmetry for QED.

This symmetry is noncovariant and nonlocal. Evidently
just as BRST has a partner in anti-BRST symmetry,
where ghosts and antighosts are interchanged, an "anti-
version" of this symmetry is easily constructed. The 6
symmetry may be used to refine the characterization of
physical states given by the BRST charge. We have also
shown that this new symmetry will generate new Ward
type identities in the quantum theory. The extension of
this symmetry to other gauges, including noncovariant
ones, and the geometric role of this symmetry will be
presented elsewhere.
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Returning now to our original motivation for searching
for this symmetry, we recall that physical states have
been characterized as being BRST invariant. To refine
this description we now impose an additional condition
that physical fields must also be invariant under the sym-
metry (5). Thus the physical states of the theory must
satisfy the conditions

Qlv) =Q
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