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Vacuum Interpolation in Supergravity via Super p-branes
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We show that many of the recently proposed supersymmetric p-brane solutions of d =10 and d =11
supergravity have the property that they interpolate between Minkowski spacetime and a compactified
spacetime, both being supersymmetric supergravity vacua. Our results imply that the eAective world-
volume action for small fluctuations of the super p-brane is a supersingleton field theory for (p+2)-
dimensional anti-de Sitter spacetime, as has been often conjectured in the past.
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It is possible that particle physics in our four-
dimensional (d =4) Universe may ultimately be well de-
scribed by some compactification of a ten-dimensional
(d =10) supergravity theory that serves as the effective
field theory of a d =10 superstring theory. Even if super-
string theory meets with complete success in this respect
there will remain the question of why the Universe
"chooses" to compactify six dimensions in a particular
way and, indeed, why it chooses to compactify any of
them since d =10 Minkowski spacetime (JR~ti) is as good
a vacuum solution as any other from a purely mathemati-
cal point of view. In contrast to solutions of simple flat
space field theories there is no way to compare the ener-
gies of difterent compactifications and thus determine
"the" vacuum by finding the one of lowest energy. In
these circumstances it might be supposed that the choice
of compactification must be left to some theory of initial
conditions. An alternative is that all possible compacti-
fications are already to be found in diAerent spatial re-
gions of a single (presumably ten-dimensional) universe.
The particular region in which we find ourselves must
then be decided by chance and/or anthropic considera-
tions. Ideas along these lines, but within the context of a
four-dimensional universe, have been suggested previous-
ly by Linde [I], and the possibility of an interpolation be-
tween diAerent compactifications of d =11 supergravity
was suggested by van Baal, Bais, and van Nieuwenhuizen
in their work on "local compactification" [2].

A clue to progress is this direction is provided by con-
sideration of the extreme Reissner-Nordstrom (RN)
black hole as a solution of N =2, d =4 supergravity. This
solution interpolates between four-dimensional M in-
kowski spacetime (At4), at spatial infinity, and (adS)2
XS, down an infinite wormhole throat [3]. Both asymp-
totic spacetimes are maximally supersymmetric "vacua"
of N =2 supergravity. We shall show here that many of
the recently discussed extreme black p-brane solutions of
d =10 [4-7] and d =11 [8,9] supergravity also interpo-
late between supersymmetric (although not always maxi-
mally supersymmetric) vacua. The cases that most close-
ly resemble the RN prototype are (i) d =11 mern-brane
(p =2), (ii) d =11 five-brane (p =5), and (iii) d =10 IIB

self-dual three-brane (p =3).
For these cases the p-brane interpolates between Aid

and (adS)&+2&5" . The latter spacetimes are known
to be maximally supersymmetric solutions (for the ap-
propriate value of p) of the respective supergravity
theories [10-12]. Like the extreme RN black hole, these
p-brane solutions are nonsingular and break only half the
supersymmetry; they may therefore be regarded as exam-
ples of "supersymmetric extended solitons. "

An example that does not quite fit the above pattern is
the (iv) d =10 five-brane. We shall show that this solu-
tion interpolates between Agio and AL7&S . This is some-
thing of a surprise since no compactification of d =10 su-

pergravity to AL7 on S has been previously described. As
we shall see, the explanation lies in the asymptotic behav-
ior of the dilaton field down the wormhole throat; rather
than approach a constant, as it does for cases (i)-(iii)
above, it approaches a linear function of the inertial coor-
dinates of At7 (this behavior is similar to certain d =4
"dilaton black holes" [13]). We shall show that there is
indeed such a compactification of d =10 supergravity but
it is not maximally supersymmetric because, like the
five-brane solution itself [14], it breaks half the super-
symmetry. That is, unlike cases (i)-(iii), the full super-
symmetry is not restored in both asymptotic regions for
case (iv). Nevertheless, the five-brane solution is non-
singular and supersymmetric, so it too can be regarded as
a supersymmetric extended soliton.

A further implication of our work concerns the nature
of the eff'ective world-volume action for the p-brane solu-
tions of cases (i)-(iii) in which there is an interpolation
between Minkowski spacetime and a lower-dimensional
anti-de Sitter (adS) spacetime. Far down the wormhole
throat we have a supergravity theory compactified on a
(d —p —2)-sphere to adS&+2. It is known from studies of
these compactifications that the fields of a singleton su-
permultiplet of the adS supergroup appear as coefticients
in the harmonic expansion of the d-dimensional fields on
the (d —p —2)-sphere, but that these can be gauged away
everywhere except at the boundary of adS [15]. This re-
sult is in accord with the currently accepted field theoret-
ic interpretation of singleton irreducible representation of
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adS groups, i.e., that they are what we would now cail to-
pological held theories in that all physical degrees of free-
dom reside on the boundary [16-18]. In the current con-
text the boundary is just the opening of the wormhole
throat, which is perceived from the exterior as the p-
brane core. We therefore conclude that the world-volume
fields of the effective p-brane action should be those of
the appropriate adS singleton supermultiplet. These are
as follows [19]: (i) three-dimensional N=8 scalar super-
multiplet, (ii) six-dimensional N= 2 antisymmetric tensor
multiplet, and (iii) four-dimensional %=4 Maxwell su-
permultiplet.

In cases (i) and (iii) it is known that these are indeed
the world-volume fields by an analysis of the fluctuations
about the p-brane solution [5,20]. In case {ii) one can
deduce the world-volume 6elds from the fact that they
must include five Goldstone scalars associated with the
breakdown of translation invariance at the five-brane's
world volume in the five "transverse" directions and the
fact that these Aelds must appear in an /V=4 world-
volume supermultiplet, because this corresponds to the

correct number of supersymmetries left unbroken by the
solution. The unique six-dimensional %=4 supermul-
tiplet with five scalars is the antisymmetric tensor multi-

plet [21). Note that the fermions of this multiplet trans-
form as a 4-piet of USp(4) —Spin(5), as expected since
an SO(5) group of rotations in the five-dimensional trans-
verse space is left unbroken by the Ave-brane solution.

It has been suggested at various times in the past that
effective actions for super p-branes might be considered
as supersingleton field theories associated with the ap-
propriate supergroup extension of the (adS)p+2 group
[19,22,23]. Since this group acts as a conformal super-

group on the boundary and since the superstring action
has worldsheet conformal invariance (in the "conformal"
gauge), this proposal is most natural for super-strings.
However, it is known that the effective action for small
(i.e., to quadratic order) fluctuations of a membrane at
the boundary of adS space is also conformally invariant

[19,20]. Qur results provide significant further evidence
for the connection between supersingleton field theories
and super p-branes.

All of the metrics to be considered here have the form

(d-p-3) (d p 3)

dt2+ 1—
~ (d —p —3)- ~

~ (d —p —3) ' (d-p —3) y

dr +r 1—
~ (d —p —3)- ~,+i

2dQ(d p 2)

for constants y„and y„and where dQ(~ ~ 21 is the "round" metric on the (d —p —2)-sphere (althou h it is straight-
forward to extend the results we will obtain below to the case in which it is any Einstein metric on S ~ ). These
metrics are asymptotic to the Bat metric on d-dimensional Minkowski space, Std, as r ~. They have an outer horizon
at r =r+ and an inner horizon at r =r —,in close analogy with the RN black hole solution of d=4 Einstein-Maxwell
theory, which is in fact a special case of the above metric with d=4, p =0, y„= —1, and y„=2. When there is a dilaton
field p, it will take the form (in the solutions of interest here)

i (d —p —3) y~

(2)

2dQd p

for some constant y&. We are principally interested in the extreme case for which r+ =r —=a. In this case the metric is
' (d—p —3) y

~ (d —p —3)- ~,+i
dsd = 1— [ dt +d—x-dx]+ a (3)

r r

which can be interpreted as the metric of a Aat, static,
and in6nite p-brane. However, only if y, = —

1 is this
metric nonsingular at r =a, so only in this case can it be
considered to represent an "extended soliton. "

Fortunately, y„does equal —1 for the known p-brane
solutions of d= 1 1 supergravity, cases (i) and (ii) above
This is not true of d =10 supergravity but here it should
be remembered that in the presence of a dilaton there is
an intrinsic ambiguity in the metric because a new, albeit
conformally equivalent, metric can be obtained by rescal-
ing the old one by any positive function of the dilaton,
e.g., a power of e~. The values of the indices y and y,
used here correspond to the metric for which the La-
grangian takes the form X=4 —ge ~R+ . . - . This

form is appropriate to the interpretation of solutions of
1=10 supergravity theory as approximate solutions of
string theory. For cases (iii) and (iv) above, y, = —

1 for
this choice of metric so these solutions can be considered
as nonsingular within the context of string theory; we
shall comment briefly on the other p-brane solutions of
d = 10 supergravity below. The remaining exponents
for the cases (i)-(iv) studied here are (i) y

= 3, {ii)
y„= —,', (iii) y„= 2 and ye=0, and (iv) y„=O and

yp =1.
To examine the asymptotic behavior as r a we define

the new variable k by aA, =(d —p —3)(r —a), in terms of
which the metric (3) becomes

3755



VOLUME 71, NUMBER 23 PH YSICAL REVIEW LETTERS 6 DECEMBER 1993

' 2

ds = X"'[—dt +dx dx]+ dk +a dQd p 2 [I+0(k)] .(d- p-3)X

I n the r a limit we can neglect the O(k) terms. Then,
defining p=alnk/(d —p —3), we obtain the asymptotic
metric

a b c
Hmnp =kern en ep eabc~

ds -e "' [—dt +dx dx]

+dp +a dA) —p —2 (s)

where e '(y) is the dreibein for the 3-space, k and k' are
constants, and n is a unit spacelike 7-vector. The Einstein
equation now yields

which is the metric of (adS)p~2&&S p if y AO, as
happens for cases (i)-(iii). In these cases the p-brane
solution interpolates between Ad and, respectively, (i)
(ads)4&&S, (ii) (adS)i&&S, and (iii) (adS)sxS . These
are all known compactifications of d=11 and d=10 su-

pergravity, preserving all the supersymmetry.
The above three cases are all closely analogous to the

d=4 extreme RN black hole, but this analogy is closest
for the self-dual three-brane as we now explain. The ex-
treme RN black hole has a conformal isometry that ex-
changes the two asymptotic regions [24]. The generaliza-
tion to p-brane solutions of the form (1) with y„= —

1 in-
volves the consideration of a new radial coordinate r
given by

2(d- p-3)
r (d —p —3) (d —p —3)—a

r —a-(d- p-3) (d- p-3) (6)

(d —p —3)y,'p, (7)

i.e., a dilaton that is linear in the inertial coordinates of
Such a compactification of d=10 supergravity has

not been previously described in the literature but our re-
sults imply its existence. To verify this we shall need the
bosonic action of d =10 supergravity

The new metric is then conformal to the original one if
y„=2/(d —p —3). This condition is satisfied by the d=4
extreme RN solution. Of the above three p-brane solu-
tions it is satisfied only by the self-dual three-brane.

For the d =10 five-brane y =0 so we have instead an
interpolation between Af~a and (iv) At7xS; and, since
y&&0, a dilaton that does not approach a constant down
the S throat but, instead, has the asymptotic behavior

R~b 2 k B~b

where m is the connection with torsion m =co —
2 H

(we use here the results of [27] with co —ai and a res-
caled H). We have 8@M=0 for our solution because—

2 H is the parallelizing torsion for the 3-sphere, while
&, =0 implies, using k'=k, that

2 n r~ —
—,', r'"H.b, t. =0. (i3)

Since e is chiral, I ' 'e =e' 'y7@ where y7
=r'r ' r,

which satisfies (y7) =1. Hence (13) implies that

which implies that the 3-space is S with inverse radius
k. The antisymmetric tensor equation is trivially satisfied
while the p equation is satisfied if k'=k. Hence At7xS
with a linear dilaton is a solution.

We remark that a similar compactification to At4 on
S xS also exists provided the two three-spheres have
the same radius. Such a compactification was considered
previously [25], with a diA'erent ansatz for the dilaton
field p, but the solution found there was unacceptable
[26] (because singular in p). In fact, in [26] a "no-go"
theorem was proved, under certain premises, that rules
out such compactifications. The solution found here
evades this theorem because the linear dilaton was ex-
cluded by the premises of the theorem.

To determine how many supersymmetries are pre-
served by the S compactification we need the fermion
supersymmetry transformation laws in a bosonic back-
ground. These are

6I//M =VM($ ) e= t) e+ ai gitI
(i 2)

(I-Mt) y= —,', f M»H „)e

d "xi—ge "[R+4(8y) ' —
—,', H'], y7n I e=t.'. (i4)

where 0 is a three-form field strength. The field equa-
tions are

0 =RMtv —
4 HMP~H& +2VM &tv p,

0 V (J —2yHM/YP)

0=4(ay)' 4V'y R+ —,', H —~ HMN—'
We now split the coordinates x into two sets, x"
(@=0,1, . . . , 6) for JM7 and y (m=1, 2, 3) for a com-
pact 3-space, and we make the ansatz

The matrix y7n I squares to unity and has zero trace,
which means that of the sixteen possible linearly indepen-
dent chiral d =10 spinors only eight linearly independent
combinations satisfy (13). The solution therefore breaks
half the supersymmetry. Thus, the d = 10 five-brane,
which itself breaks half the supersymmetry, does not in-
terpolate between maximally supersymmetric vacua.

The remaining knov, n p-brane solutions of d =10 su-
pergravity are singular in the "string theory metric" used
here since, for them, y, & —1. It appears, however, that
in each case a new nonsingular metric can be obtained by
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rescaling by an appropriate power of e~. A case of partic-
ular interest is the extreme version of the string solution
of Dabholkar et al. [28], since this has previously been
shown [29] to be nonsingular, albeit in a different sense to
that discussed here, in the rescaled metric appropriate to
a hypothetical five-brane theory, dual to string theory.
As will be shown elsewhere [30], this rescaled metric is

also nonsingular in the sense used here. That is, when
considered in five-brane variables the string solution of
d=10 supergravity also interpolates between supersym-
metric vacua of d =10 supergravity.

Up to now we have regarded the d = 10 five-brane as a
solution of N=1, 1=10supergravity, but it is also a solu-
tion of the d =10, N =22 and N =28 supergravity
theories. We conclude with some remarks on these cases.
In the case of the N=2A theory, one would expect, in

view of the fact that this theory is the dimensional reduc-
tion of d= 1 I supergravity, that the world-volume field
content should be the same as in that theory, i.e., the six-
dimensional N =4 antisymmetric tensor multiplet, which
contains five world-volume scalars. This is known to be
true from an analysis of small fluctuations about the
d=10, N=2A five-brane solution [5]. The d= 10, N
=28 theory is more problematic; a similar small fluctua-
tion analysis [5] led to the conclusion that the world-
volume fields are those of the N=4 Maxwell supermul-
tiplet. This does not fit easily with the proposal that the
linearized world-volume field theory (at least) is to be
identified as a supersingleton field theory because the
N=4 Maxwell theory is not conformally invariant in six
dimensions. Without entering into a further discussion of
this case, which we have not properly understood, we
wish to point out here that the N =28 supergravity has a
rigid U(1) symmetry under which, inter alia, the two
two-form potentials rotate into each other, and that this
symmetry is broken by the five-brane solution. One
would therefore expect a world-volume Goldstone field
for this broken U(l), in addition to the four Goldstone
modes of broken translation invariance, but this would
contradict the conclusions of Ref. [5].

P.K.T. would like to thank Nathan Berkovits for help-
ful discussions.
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