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Wess-Zumino-Witten Model Based on a Nonsemisimple Group
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We present a conformal field theory which describes a homogeneous four dimensional Lorentz-
signature space-time. The model is an ungauged Ness-Zumino-Witten model based on a central exten-
sion of the Poincare algebra. The central charge of this theory is exactly four, just like four dimensional
Minkowski space. The model can be interpreted as a four dimensional monochromatic plane wave. As
there are three commuting isometrics, other interesting geometries are expected to emerge via O(3,3)
duality.

PACS numbers: l l. l 7.+y, 02.20.Sv

In this paper, we will describe a new example of a
homogeneous (but not isotropic) four dimensional space-
time —with Lorentz signature —that can be constructed
from an ungauged Wess-Zumino-Witten (WZW) model.
The model has c (or in the supersymmetric case c) equal
to 4, so it can be directly substituted for four dimensional
Minkowski space and regarded as a solution of any more
or less realistic string theory. It describes a special case
of a monochromatic plane wave with more than the usual
symmetry.

The model is a WZW model based on a certain non-

semisimple Lie algebra of dimension four. The algebra
has the following explicit description:

[J,P;] =ejPJ, [P;,P~] =ei~T, [T,J] =[T,P, ] =0. (1)

This algebra is a central extension of the 2D Poincare
algebra to which it reduces if one sets T=p. We will call
the corresponding simply connected group R.

In general, given a Lie algebra with generators TA

(here TA =Pter P2, J, T) and structure constants f~B (so
[TA, TB] fABTD) to define 'a WZW model, one needs a
bilinear form OAB in the generators TA, which is sym-
metric (O~B = QB~), invariant,

8). Usually for semisimple groups one can choose the bi-
linear form I1,AB =fAcfBD (which is equivalent to
TrT~T~ with the trace taken in the adjoint representa-
tion). However, for nonsemisimple groups this quadratic
form is degenerate, and indeed for the algebra (I) one
gets

0 0 0 0
0 0 0 0
00 —20
0 0 0 0

Nevertheless, the R Lie algebra does have another nonde-
generate bilinear form [1], i.e. ,

1 000
0 100

AB P 0 0
0010

It is easily shown that the most general invariant quadra-
tic form on this Lie algebra is a linear combination of
these:

fAB II CD+fAC II BD (2) k 0 0 0

and nondegenerate (so that there is an inverse matrix
obeying 0 QBc =Bc). (Usually, 0 must obey a

certain integrality condition, but that will have no analog
here because of the simple structure of R. That will be
clear from the ability below to reduce the Wess-Zumino
term to an integral over X, without introducing any singu-
larities. ) Then the WZW action on a Riemann surface Z

1s

Swzw(g) = d rr QgBA~ A
4m~~

+ ' „d'«.»A'A'BA "nCDf.B (3)12~~B

where the 8, 's are defined via g '6 g=A TA. Here 8
is a three-manifold with boundary BB=X, and g is a map
of Z to R (extended in an arbitrary fashion to a map from

0 k 0 0
ppb'k
0 0 k 0

By setting b =b'/k we can write A~B and its inverse as

1 000 100 00100, 1
010 0

PPgl ~ PPP
0010 0 0 1

—b

(7)
This metric on the Lie algebra has signature +++ —,
and that will therefore be the signature of the space-time
described by the corresponding WZW model.

In order to write (3) explicitly we need to find the
4A's. To this purpose we use the following parametriza-
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tion of the group manifold:

~t' as pi uJ + i' T

(In fact by using the commutation relations to move all

of the J's and Ts to the right, any group element can be
uniquely brought to this form; this is somewhat like the
process of normal ordering of an exponential of a sum of
creation and annihilation operators. ) By using

from which we can read oA the 2 's and compute

Agg = B~OL t) ap + 26~vs) ii

+ b 8,8'u+ Eji, 8'u ti, a~ al, ,

E p„A A A Qcpfge =2E p„&& 38 (BE Q1 t) ap] .

Finally, the Lagrangian looks like

(i 2)

e" P; e " =cos u P; + e;z sin u P~

and
r 1

H d xH g H (1 x)1H-
~e xe

we compute

B,g=e ' ' '(tl, a;P;+ & EjI, Tr),ajak)e" +'

+gt), (uJ + v T) .

By using (10) and (9) we find

(9)

(i 0)

+ Ejl, 6'u t),aj af, +i 2Epyu 8 a1 9 ya 2] . (14)

By identifying this Lagrangian with the o-model action
of the form

S=„d (GMN t),X O'X + &MNE pt)'X t)~X ),
(I S)

g
' B,g =(cosu B,ay+sinu Ejl, r),aj)Pq

+ (ti, u )J+ (ti, v + —,
'

E,i, t),a, aj, ) T,

where X =(a1,a2, u, v), one can read off the background
space-time metric and antisymmetric tensor field. The

(11) space-time geometry is described by a Lorentz-signature
! metric G~~,

l 0
az
2

1 0 0
az
2

GMlV

0 1

az
2

0

a~
0

0

G
—

1 GMN

0 1 0

0 0 0

a~

2

1

2 2
aZ a) a] az

1 +
2 2 4 4

and B1q =u, and of course the dilaton is constant because
of the homogeneity of the group manifold. (In gauged
WZW models, the nonconstant dilaton emerges from in-

tegration over the gauge fields. ) The corresponding
space-time metric is

ds =dak dak+ 2du dt'+ ejk da) ap du+ & du

As a WZW model, this model should be conformally
invariant. To check this, we first look at the one-loop
beta function equations

RMN 4 HMN DM DN 4 =0, —

HLMN + D pHLMN

—R+ —„H '+ 2A'y+ (Ay) '+ A =0,
where Hg~~ =D )g BM~) and HID =H~pR H~, H2 PR 2

=HMpRH, and A=2(c —4)/3a'. One quickly finds
1that the only nonzero component of RM~ is R33 2 and

as the only nonzero component of B is B~z =u, the only
nonzero component of H is H3~2 =1. As G =0, R33=
=H =0. The only nonzero component of HM& is H33

=2. Putting these pieces together, one verifies Eqs. (1 g)
with A =0 and c =4.

A more direct way to see that the one-loop beta func-
tion equations are satisfied is to actually compute the
one-loop diagrams that contribute to the beta functions.
First of all, the only one-loop diagram that one can draw
is the one with two u's in the external lines, and a s in

the internal lines. This is because there is no uu propaga-
tor, as G =0. Moreover, by comparing the interaction
terms in the Lagrangian one notices that they give oppo-
site contributions to this one-loop diagram. Indeed the
interaction term contained in the space-time metric piece
of the Lagrangian is

E,kak B,

ajar

Ll yipyEj/&Qk t)

ajar

B (i9)

where gp~ is the world-sheet metric. The interaction term
associated with the antisymmetric vector field is

2lu&py apa
~ 6 az = —l 2ep~ 1 6 az 9 u

=lEp~E&I ak ~ aj ~ u .
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The above couplings diAer only because one has g~y and
the other has impy. They give opposite contributions to
the one-loop diagrams since

a 2 c
g Pgzy gPy, l 6' Pbay QPy ~ (21)

100 0
010 0
000 1

001 1
—b

(22)

satisfies the Virasoro master equation

LAB 2I ACI) I DB LCDLEFfA f8 I CDfF ffA LBJE

(23)

This means that one can carry out the Sugawara con-
struction and that the central charge is c =2Q~~L =4.
A similar analysis has been carried out for a larger class
of nonsemisimple groups [5].

The metric (16) can be turned into a more familiar
form by using the following representation for g:

This is exactly what happens in [2,3]. Moreover there
are no higher loop contributions to the beta function.
Indeed one can check that no higher loop diagrams can
even be drawn, because all of the interaction vertices have
an external u, but the uu propagator vanishes. Therefore
c =4 identically in perturbation theory.

The statement can be confirmed nonperturbatively by
generalizing the Sugawara construction to nonsemisimple
algebras. One way is to follow the approach in [4] and
check that the tensor

The above metric exhibits three commuting symmetries
which are realized as translations

a —a+c~, f—f+c2, t —v+c3 (27)

for arbitrary constants c~,c2, c3. Obviously, translation in
i is a null vector. The above metric can be recognized as
the metric [6] of a plane wave. This plane wave is mono-
chromatic; it is an extremely strong wave, since there are
actually in this coordinate system two singularities in
each period —when cosu = ~ 1. It is worthwhile to no-
tice that both in (17) and in (26), the parameter b can be
absorbed into a shift of v, i.e. , v v =bu/2.

Of course, the model really has more symmetry than is
manifest in either of the two ways of writing the metric
given above. From its origin as a WZW theory, the mod-
el clearly describes a homogeneous space-time; the left
and right action of R on itself gives in toto a seven-
dimensional symmetry group of the space-time. (R is
four dimensional, but as the left and right actions of the
central generator T coincide, the total number of sym-
metries coming from the left and right action of R on it-
self is seven rather than eight. ) The extra symmetries
determine the particular strong field nature of this plane
wave.

Our explicit argument showing that the higher order
corrections to the beta function vanish because there sim-

ply are not any suitable Feynman diagrams is probably
relevant to a larger class of plane waves [7].

Research was supported in part by the Ambrose
Monell Foundation (C.R.N. ) and by NSF Grant No.
PHY91-06210 (E.W.).

eaPIeujefPI+' T (24)

a~ a+fcosu, a2 fsinu,

v v+ —,
' afsinu, u u.

Then the metric (17) turns into

(25)

ds =da +df +2da df cosu+2du dv+bdu . (26)

which exhibits the three commuting symmetries of the
model (the left and right action of P~ and the left or right
action of the central object T all commute). This repre-
sentation (24) can be transformed into the form (8) used
earlier via
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