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Ex:act Results for the One-Dimensional Self-Organized Critical Forest-Fire Model
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We present the analytic solution of the self-organized critical (SOC) forest-fire model in one di-
mension proving SOC in systems without conservation laws by analytic means. Under the condition
that the system is in the steady state and very close to the critical point, we calculate the proba-
bility that a string of n neighboring sites is occupied by a given configuration of trees. The critical
exponent describing the size distribution of forest clusters is exactly v. = 2 and does not change
under certain changes of the model rules. Computer simulations con6rm the analytic results.

PACS numbers: 05,40.+j, 05.45.+b, 05.70,Jk

The concept of self-organized criticality (SOC) [1] has
attracted much attention during the last few years since
it might explain the origin of fractal structures and of
1/f noise in nature. While the sandpile model [1], which
is the prototype for SOC, is well understood and has
also been investigated analytically [2], the investigation
of other SOC systems is mainly restricted to computer
simulations [3—6]. In particular, the mechanism leading
to SOC in nonconservative systems is barely understood.
So far, there exists no proof and it has even been ques-
tioned whether such nonconservative systems can become
critical.

A recent paper introduced a critical forest-fire model
which is nonconservative and showed that a double sep-
aration of time scales leads to SOC [7]. A series of com-
puter simulations confirm the criticality of the model
[8—11], and a scaling theory yields relations between var-
ious critical exponents [10,11]. An analytic proof for the
criticality of this model, however, has not been given
so far. Reference [9] contains the mean-field theory of
the forest-fire model, which seems to agree with simula-
tions in high dimensions. Critical exponents for the one-
dimensional forest-fire model have been derived by an-
other mean-field approximation in [12], but do not agree
with simulations.

In this paper, we present the analytic solution of the
one-dimensional forest-fire model, thus proving for the
first time that a nonconservative system can indeed show

SOC. The analytic calculation shows also that the value
of the critical exponent which characterizes the size dis-
tribution of forest clusters does not change under certain
changes of the model rules. The values of the critical ex-
ponents have already been given in [7] by an argument
which was rather intuitive and failed in higher dimen-
sions.

The forest-fire model [7] is defined on a d-dimensional
hypercubic lattice with I" sites. Each site is occupied
by either a tree or a burning tree, or is empty. The state
of the system is parallely updated by the following rules:
(i) A burning tree becomes an empty site. (ii) A green
tree becomes a burning tree if at least one of its nearest
neighbors is burning. (iii) A green tree becomes a burn-
ing tree with probability f (& 1 if no neighbor is burning.
(iv) At an empty site a tree grows with probability p.

A forest-fire model without rule (iii) was introduced
earlier [13].

After a transition period, the model assumes a steady
state with a constant mean forest density p. Then the
mean number of growing trees equals the mean number
of burning trees. During one time step, there are on an
average fpL" lightning strokes in the system, and p(l-
p)I" trees grow. Consequently, the mean number of trees
destroyed by a lightning stroke is

When the tree growth parameter p is small enough for a
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given value f/p, forest clusters that are struck by light-
ning burn down before new trees grow at their edge. In
this case the dynamics of the system are completely de-
termined by the ratio f/p I.n the limit f/p —+ 0, s di-
verges, and the system approaches a critical point where
the size distribution of forest clusters n(s) obeys a power
law. Since any finite system is never exactly at the crit-
ical point, the power law breaks down at a cluster size
s ~„oc (f/p) ", and is given by n(s) oc s C(s/s, „).
The cutoff function C is C(z) = 1 for x ( 1 and C(x) —+ 0
for large x. The critical behavior in the forest-fire model
can be observed independently of the initial conditions
and over a wide range of parameter values, as long as

f (& p with sufficiently small p, i.e. , as long as time scales
are separated. Then the forest-fire model is self organ-ized
critical [1].

We now turn to the one-dimensional case of this model
and investigate the properties of its steady state. To
avoid Gnite-size eKects, we always assume that the system
size I is I )) p/ f The c.ondition of time-scale separation
reads in one dimension p &( f/p Conse. quently, there are
never two lightning strokes or two growing trees at the
same time within a distance & p/f Let n. (s) be the
mean number of forest clusters of s trees, divided by the
number of sites I In [7], w. e already derived the following
relations:

) sn(s) = p,

The first relation follows from the condition that the total
number of forest clusters is constant in the steady state.

Before continuing, we need some definitions. Each site
can be in two possible states which we denote by 0 (empty
site) and 1 (tree). Let i~ E (0, 1}be the state of site a
and let P„(ii, . . . , i„) be the probability that an arbi
trarily chosen string of n sites is in the state (ii, . . . , i„).
We also define the conditional probabilities f„(ii, . . . , i„)
that the configuration (ii, . . . , i„) is ignited by fire during
one time step. f„(ii, . . . , i „) is the sum of the probability
that a tree belonging to the configuration (ii, . . . , i„) is
struck by lightning, and, if ii ——1 or i = 1, the proba-
bility that Are enters the configuration from outside. In
the following, we calculate the probabilities P„and f„,
neglecting terms which are smaller by a factor f/p than
the leading terms. The results become more and more
exact when the critical point is approached.

The probabilities Pi (i) can be expressed in terms of the
mean forest density: Pi(l) = p and Pi(0) = 1 —p. At
any given site, growth and burning of trees occur equally
often, and therefore

fi(1) = p(1 —p) jp.

fi(l) is the sum of the probability that a tree is ignited
by a neighbor and the probability f that it is struck by
lightning. The latter is smaller by a factor f /p than fi (1)
and therefore negligible.

In addition to symmetry relations, the probabilities
Pz(ii, i2) satisfy Pz(00) + P2(10) = 1 —p and Pz(10) +
P2(ll) = p. The probabilities fz(ii, iq) are related by
fz(10)Pz(10)+fz(ll)P2(11) = fi(l)Pi(l) = p(1 —p) and,
since the system is in the steady state, by fz(ll)Pz(ll) =
2pPz(10) and [p + fz(10)]Pz(10) = pP2(00). When a
tree is ignited, the Are comes either from the right neigh-
bor or from the left neighbor. This leads to p(l —p) =
fq(ll)Pz(ll) and f2(10) = 0, and finally to

Pz(00) = Pz(10) = (1 —p)/2, Pz(ll) = (3p —1)/2. (4)

Remember that terms of order f /p have been neglected.
In the limit f/p ~ 0, i.e. , at the critical point, Eq. (4)
becomes exact. Before we consider the case n & 3, we
would like to comment on the results of Eq. (4).

(i) P2(10) = Q, i n(s) [see (2)] since the configuration
10 represents the right-hand edge of a forest cluster.

(ii) The exact result for f2(10) is f2(10)P2(10) = fp
since each time lightning strikes the system a right-hand
edge of a forest cluster burns down. fz(10) is a factor f /p
smaller than fz(ll) and therefore negligible since only a
portion oc f /p of all clusters burns down before trees grow
at their edge. Below we will see that the approximation
fz(10) = 0 leads to f„(l 10) = 0 for all n ) 2, sim-
plifying considerably the calculations. f„(l . 10) = 0
cannot be true for large values of n since forest clusters
of size p/f are struck by lightning with a large proba-
bility, which leads to f„{l 10) g 0. Our subsequent
results will therefore only be valid for n (( p/f

We are now able to calculate the probabilities P„.
From f„(l 1)P„{1 1) + f„(1 10)P„(l 10)
f„ i(1 1)P„ i(l 1) and f (1 10)P„(l 10)
f„ i (1 10)P„ i (1 10) we obtain by recursion

f„(l l)P~(1 1) = p(l —p) and f (1 10) = 0. This
means that a string of n sites is covered by a completely
dense forest when it catches fire. This dense forest be-
longs to a large forest cluster which has a mean size s && n
at the moment when it is struck by lightning. As long
as not all sites are occupied by trees, the dynamics of
our string are completely determined by tree growth. All
configurations which contain the same number of trees
therefore have the same probability. Let P„(m) be the
probability that the string is occupied by m trees. In the
steady state the P„(m) are related by the equations

pnP„(0) = f„(1 1)P„(n) = p(l —p),

p(n —m) P„(m) = p(n —m + 1)P„(m —1) for m g 0, n,

which lead to the result
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P (m) = (1 —p)/(n —m) for m (
n —1

P (n) = 1 —(1 —p) ) 1/(n —m)
m=O

= 1 —(1 —p) ) 1/m.
m=1

The size distribution of forest clusters is

n(s) = P,+2(01 10) =
S

1 —p 1 —p s
(s + l)(s + 2)

10
M
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10
10 10 10 10 10 10

FIG. l. Size distribution of the fires for f/p = 2/50000
and I = 2 . The smooth line is the theoretical result which
is valid for cluster sizes & 8

This is a power law with the critical exponent v = 2.
Equation (6) leads to P, i n(s) = (1 —p)/2, in agree-
ment with Eq. (2). The size distribution of fires is
oc sn(s) oc s . The size distribution n, (s) of clusters
of empty sites is

P +z(2) 2(1 —p)

(7)
which is also derived in [12].

There is a characteristic length 8 where the power
law n(s) oc s breaks down. During one time step,
a cluster of size s grows with probability 2p to a big-
ger cluster, and it is destroyed by lightning with prob-
ability fs When t. he cluster size approaches s oc p/f,
the cluster is struck by lightning with a finite probabil-
ity fs This sim. ple argument leads to s „oc p/f and
A = 1, as did the scaling theory in [7]. The remain-
ing critical exponents are p = v = 1, as already de-
rived in [7]. The following microscopic derivation shows
that the relation for s „acquires a logarithmic correc-
tion factor. We calculate s „ from the condition that a
string of size n & s is not struck by lightning until all
trees are grown. When a string of size n is completely
empty at time t = 0, it will be occupied by n trees af-
ter T(n) = (1/p) Q" i 1/m ln(n)/p time steps on an
average. The mean number of trees after t time steps

is m(t) = n[1 —exp( —pt)]. The probability that light-
ning strikes a string of size n before all trees are grown
is fP, i m(t) = (f/p)n[ln(n) —1] (f/p)nln(n). We
conclude

s s„ ln(s s„) oc p/f for large p/f (8)

Next we calculate the relation between the mean forest
density p and the parameter f/p Th. e probability P„(n)
in Eq. (5) cannot be less than zero. Since P" i 1/m
ln(n) for large values of n, the mean forest density must
approach the value 1 at the critical point via 1 —p oc

1/ln(s „).A more precise result for p is obtained from

p = ) sn(s)
s=1

Bmax

(1 —p) ln(s „)+ sn(s) ds.

The forest density approaches the value 1 at the critical
point. This is not surprising since there exists no in-
finitely large cluster in a one-dimensional system as long
as the forest is not completely dense. Combining Eqs. (6)
and (9), we obtain the final result for the cluster-size dis-
tribution near the critical point

(10)

with s „given by Eq. (8).
Our computer simulations confirm the analytic results.

The simulations were performed using the same method
as in [8]. In Fig. 1 the size distribution sn(s) of clusters
struck by lightning is plotted. The smooth line is the
analytic result derived from Eq. (6). It fits the simula-
tion perfectly in the region 8 & s 1000. The bump
in the cluster-size distribution has the following explana-
tion: consider the dynamics of a forest cluster. As long
as the cluster size is s & s „, its average size increases
each time step by 2p(s+ 2) [can be derived from Eq. (5)];
i.e. , its growth speed is 8 oc s. A tree spends a portion
oc 1/s of its lifetime in clusters of size s, and consequently
the growth speed is related to the cluster-size distribu-
tion by sn(s) oc 1/s, which leads again to the power law

n(s) oc s . When the cluster size becomes comparable
to s ~, the growth speed increases no longer proportion-
ally to 8 but slower than s since the largest neighbors
of the cluster have already been destroyed by lightning.

With the scaling ansatz n(s) = (1 —p)s zC(s/s „), the
second term in the last line reduces to 1 —p multiplied
by a constant factor, and thus

p = ln(s „)+ const ln(p/f) + const
1 —p

ln(p/f) for large p/f
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TABLE I. Numerical results for the ratios ln(p/ f) (1 —p)/p
and (p/f)/s „lns „ for different values of p/f

P/f 3125 6250 12 500 25 000 50 000
ln(p/ f) (1 —p) / p 1.13 1.10 1.06 1.04 1.02
(p/f)/s, lns „3.65 3.61 3.56 3.62 3.55

10

10
(3

io -5

Therefore s n(s) increases with increasing s for s & s
giving rise to the bump in the cluster-size distribution.
When the forest cluster is so large that it is struck by
lightning with a nonvanishing probability, n(s) decreases
exponentially.

The ratio ln(p/f)(l —p)/p is given in Table I for dif-
ferent values of p/f. It approaches the value 1 with in-

creasing p/f, as predicted by theory [see Eq. (9); the
deviations from the value 1 for smaller p/f are due
to the constant contribution in Eq. (9)]. The ratio
(p/f)/s „ln(s „) is also shown in Table I for difFer-
ent values of p/f With. in numerical accuracy these ra-
tios are identical, in agreement with our theoretical result
Eq. (8).

Finally, we calculate the temporal correlation function
of the number of burning sites. The mean number N, (t)
of trees that burn t time steps after a cluster of size s
is struck by lightning is N, (t) = 2(1 —t/s)8(s —t). The
correlation function is then

G(r) oc dsn(s)s dt N, (t)N, (t + r)

oc 2s ~„/ In(s ~„) —3r [1 —ln(r)/ ln(s ~„)]. (11)

10 I

10 10 10 10

FIG. 2. The power spectrum G(w) of the fire density. The
simulation parameters are f/p = 8/50000 and L = 2 . The
straight line (theory) has the slope —2.

pass through a string of size n & s as long as not all its
trees are grown. The P„and consequently the cluster-size
distributions remain unchanged when the rules for the
occurrence of lightning are changed in one of the following
ways: (a) Lightning strikes all forest clusters of size &

s „. This model is critical in the limit s „—+ oo. (b)
Lightning strikes every T time steps the largest forest
cluster on each interval of / sites. This version is critical
for t ~ oo with fixed T. (c) Lightning strikes a forest
cluster of size s with a probability sf(s) which does not
decrease with increasing s. This model is critical for e —+

0. While the size distribution of the forest clusters and of
the clusters of empty sites remains unchanged in all these
versions of the forest-fire model, the size distribution of
fires varies considerably and is in general no power law.

The Fourier transform of G(r) is G(w) oc a [1+const x
In(as „)] for small w & 1/s „. There is a nontrivial
deviation from the a dependence in the direction of
I/f noise. Our simulations confirm the power law de-
pendence (Fig. 2) but cannot discriminate between a w

law and the complete expression Eq. (11).
We conclude with three comments.
(i) In the limit f /p ~ 0 only an infinitesimal portion of

all forest clusters, all empty sites, and even all trees are
not described by our results Eqs. (5)—(7) which therefore
become exact at the critical point.

(ii) The self-organized critical forest-fire model is in one
dimension much simpler than in higher dimensions. The
critical exponents are classical in one dimension, and the
tree distribution on a string of size n & sm~„ is stochastic.
In higher dimensions, there are always trees left when a
fire passes through a region. Therefore the tree distribu-
tion is not stochastic and the exponents are nontrivial.

(iii) The only conditions for obtaining the result Eq. (5)
are that trees grow stochastically and that a fire does not
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