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Diffusion-Limited Three-Body Reactions in One Dimension
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We study the diA'usion-limited reactions 3A 2A and 3A A in one dimension. The analytic
method of interparticle distribution functions is extended to the case where lattice sites can be occupied
by more than one particle. The exact leading time behavior of the concentration decay, and the distribu-
tion of distances between nearest particles in the long time asymptotic limit are computed. Results of
extensive numerical simulations are also presented. From the numerical data, we observe the previously
postulated logarithmic corrections to the concentration power-law decay.
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DiA usion-limited reactions in low dimensions have
attracted much interest in recent years [1-8]. Most
research has focused on the bimolecular reaction A+B

C [1],and on one-component coalescence, A+A
[2-4], and annihilation, A+A 0 [5,6]. The last two

reactions were solved exactly in one dimension, where it
was shown that the concentration of particles, c, decays
as c —I/Jt, in disagreement with the prediction of classi-
cal rate equations. A less well studied problem are the
one-dimensional n body r-eactions nA mA (m & n),
when n & 2. For n & 3, the mean-field rate equation
dc/dl = —kc" (k is a constant) yields an accurate
description of the long time asymptotic limit, c —1/

The case of n=3 is marginal. The reaction
rate, k, is expected to vanish as 1/lnt [7] but the resulting

logarithmic corrections, c —dint/t, were never observed.
In this Letter, we study the reactions 3A 2A and

3A A using both simulations and an analytic approach.
The analytic approach is an extension of the method of
interparticle distribution functions (IPDF's) [4] to the
case where lattice sites are multiply occupied. We com-

pute the IPDF, i.e., the distribution of distances between
nearest particles, and the rate constants k. The agree-
ment of the IPDF and the decay rates to simulations is

excellent. The adaptation of the IPDF method to the
present problem is proper only in the long time asymptot-
ic limit. For this reason, it fails to predict the logarithmic
corrections. Nevertheless, these are clearly observed and

measured from the numerical simulations data.
Our model is defined on a one-dimensional lattice with

lattice spacing Ax. Each site can be either empty, or oc-
cupied with one or two particles. The particles move ran-

domly to a nearest neighbor site with a hopping rate
D/(Ax) (to each side). On long length and time scales
this yields normal diAusion with diAusion coefficient D.
When a particle hops onto a doubly occupied site, an im-
mediate reaction takes place: the new site becomes singly
occupied, if the process 3A A is being modeled (case
I), or it simply remains doubly occupied, in the case of
3A 2A (case II).

To solve the system, we follow the IPDF method previ-

ously used for the solution of A+A A in one dimen-,

From the E„one can also obtain p„, the probability that
two nearest occupied sites lie n sites apart [4],

cl txpn En+ 1 2En +En —I ~ (2)

The p„constitute an "interparticle distribution function"
and the method derives its name from this fact.

One can readily write down an evolution equation for
E„(t),

e,E„= [(I —q) (E. , E.)—2D
(Ax) '

—(I+q)(E. —E.+, )]. (3)

E„—E„+i is the probability that n consecutive sites are
empty but the (n+1)th site is occupied. Thus, the first
term on the right-hand side (rhs) of Eq. (3) describes the
creation of an empty n-sites interval through the hopping
of a (single) particle at the inner edge, out of the interval.
Similarly, the second term describes annihilation through
the hopping of a particle at the outer edge into the empty
interval. Equation (3) is valid for n ) 1. To make it val-

id also for n =1 we require the boundary condition

E,(t) =1. (4)

Notice that Eqs. (3) and (4) are independent of the reac-
tion process and apply for both cases I and II.

An additional equation comes from the consideration
of reaction events. The probability that two adjacent
sites are occupied is exactly given by 1

—2E~+E2. To
compute the reaction rate we need the probability that
one of these sites, the target site, is doubly occupied (only
then will there be a reaction). We make the approxima-

sion [4]. We define, as usual, E„(t), the probability that
a randomly chosen segment of n consecutive sites is emp-
ty, i.e., contains no particles. The probability that a site
is occupied by either one or two particles is thus 1

—E ).
We introduce now the variable q(t), the conditional prob-
ability that an occupied site is doubly occupied. (The site
would be singly occupied with probability 1

—q. ) Thus
the density, or concentration, of particles is expressed as

c(t) = [I +q(t)] [1 —E (t)]//IJ. x .

003 1-9007/9 3/71 (22)/373 3 (3)$06.00
1993 The American Physical Society

3733



VOLUME 71, NUMBER 22 PHYSICAL REVIEW LETTERS 29 NOVEMBER 1993

tion that the actual number of particles in each of the two
sites is uncorrelated. Thus, for example, the probability
that the two adjacent sites are both doubly occupied is

q (1 —2E!+E2). In the long time asymptotic limit,
when q 0, this decoupling approximation yields the
correct dependence in powers of q. For this reason, we
expect it to be a good approximation, though it fails to
predict the logarithmic corrections observed in simula-
tions (see below). The change in the concentration due to
reactions is

8&q 2 (1+q) [1 —(2 —m)q] —2q
2D 1 —2E)+E2

(ax) ' 1 —Ej

(6)

We now pass to the continuum limit by defining the
spatial coordinate x nhx Th.e probabilities E„(t) are
replaced by the function E(x,t). For a completely ran-
dom distribution, one has q coax. This motivates the
scaling assumption q tp(t)hx Lettin. g b,x 0, Eqs. (3)
and (6) are replaced by

8,E 2D8zE+4Dtn8 E,
tp(t) -—[8zE(x,t) ) -p]/[28 E(x,t) )„-pl,

and the boundary condition of Eq. (4) becomes

E(0,t) 1.

(7)

(8)

(9)

In the continuum limit the difference between the two re-
action cases is retained only in Eq. (5), which becomes

8, (8 EI -p)-2(3 —m)Dto8,'Ei -p. (10)

Equations (3) and (6), with the boundary condition of
Eq. (4) can be iterated numerically for arbitrary initial
conditions. The long time asymptotic behavior obtained
from this procedure shows a clean power-law decay of the
concentration, c- I/Jt, with no logarithmic corrections.
The limiting behavior can also be obtained from the con-
tinuous Eqs. (7)-(10) using the following ansatz. As-

sume that in this limit E(x,t) E(x/O'Dt). Then, in

terms of the dimensionless variable z=x/VDt, Eq. (8)—
yields tn [—E"( 0) 2/E'(0)] V/Dt=0 /vDt, where the
prime denotes differentiation with respect to z, and 0 is

a dimensionless constant whose value depends on the re-
action process. Substitution into Eq. (7) yields

2E"(z)+ (40 + Iz)E'(z) 0.
This, together with the boundary conditions E(z 0) =1
[Eq. (9)] and E(z ~) 0 [9],yields

8, [(1+q)(1—E!)]
—(3 —m) q (1+q) (1 —2E!+E2), (5)2D

(ax) '
where m-1 (m 2) corresponds to case I (case II).
Combining Eqs. (3)-(5) we get

E(z) =erfc[(80 +z)/v 8]/erfc(480 ),
where erfc(u)—= 1 —erf(u) is the complimentary error
function [10]. Finally, the value of 0 is determined
from Eq. (10); 0! 1/4, and 0z I/J8.

The long time asymptotic decay of the concentration
can now be determined. Since c = 8E—(„-p [Eq. (1)],
we get c(t) = y /VDt, where y =exp( —80 )/J2n
x erfc(@80~). For 3A ~ A, y! =0.762568, and for
3A 2A, yz=0.933016. The reaction can then be de-
scribed by the classical rate equation dc/dt = —kc, with
k-D/2yz. Similarly, the interparticle distribution func-
tion is derived from Eq. (2); c(t)p(x, t) -8 E(x,t).
When p is expressed as a function of the dimensionless, or
scaling interparticle distance z, it approaches the station-
ary distribution

p(z)- —,
' (80 +z)exp( —20 z ——,

' z'),
where p has been normalized with respect to z. The re-

sults are in excellent agreement with the numerical in-

tegration of the discrete equations.
We now turn to simulation results. Simulations for the

3A mA process with both m=1 and m=2 were car-
ried out on a cluster of RISC/6000 workstations. The
simulations followed common, efficient algorithms, where

only occupied sites are treated at each Monte Carlo step
(this is achieved by keeping separate lists of singly and

doubly occupied sites) [8,11]. Typical lattices consisted
of 100000 sites with periodic boundary cond''!ons.
Several initial configurations were tested, including: (a)
initial density c(0) 2 (each site is doubly occupied —the
maximal possible density), (b) initial random distribution
with c(0) 0.2, and (c) an initial configuration where

every fifth site is singly occupied [c(0) 0.2, but the dis-

tribution is sharply peaked, not random]. The various
cases differ in their initial transient stage, but after a
short relaxation time they all converge to the same re-
sults. Data was recorded for the concentration as a func-
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FIG. 1. The IPDF p(g) as a function of /=ex as computed
from Eq. (13) (solid line) and compared to the simulations data
(O). The IPDF of a completely random distribution p(g)
-exp( —g) is shown for comparison (broken line).
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FIG. 2. Concentration decay as a function of time for the
process 3A 2A. Comparison with the broken line of slope 2

shows that the decay is not purely algebraic.

FIG. 3. Logarithmic corrections. Shown is [cl(y2/v'Dt )] vs

ln(t). The broken line of slope 1 is shown for comparison. The
data -also confirm the computed numerical value of y2.

tion of time, and for the IPDF when c=0.02 (at this
stage convergence to the long time asymptotic limit has
taken place, but enough particles remain for good statis-
tics).

For brevity, we present results only for case II,
3A 2A. In Fig. 1, we plot the IPDF as measured nu-
merically and as computed from Eq. (13). For compar-
ison with simulations it is convenient to use the scaling
variable g=c(t)x =yzz. We emphasize that no fitting pa-
rameters were used in producing this figure. Also shown
in Fig. 1 is the IPDF for a completely random distribu-
tion, p(g) =exp( —g), which is expected in the reaction-
limited case where classical rate equations are valid.

In Fig. 2, we plot c(t) as a function of time. It is evi-
dent that even after long times the concentration decay is
not given by a clean power law. In Fig. 3, we plot
[e/(yz/JDt )] vs ln(t). The resulting curve of slope
1 shows that the corrections are logarithmic, c
—y2Jln(t)/Dt, and confirms the correctness of the nu-
merical value of y2. Similar results are observed for case
I, 3A~ A.

In conclusion, we have presented an analytical ap-
proach for the reactions 3A mA (m =1,2) in one di-
mension, based on the method of interparticle distribution
functions. This approach predicts accurately the leading
time behavior and the IPDF's in the long time asymptotic
limit. These predictions were confirmed by extensive nu-
merical simulations. From the simulation data, we were
able to observe the previously postulated logarithmic
corrections to the concentration time decay.

There remain several interesting open problems. The
IPDF method cannot deal with complete annihilation,
3A 0. It will be interesting to compare this case to the
reactions studied here. We have solved our equations
only in the long time asymptotic limit. The transient be-

havior, however, is quite rich (with a pronounced depen-
dence on the initial IPDF's). Finally, our analytic ap-
proach has yielded only the leading time behavior; the
logarithmic corrections were demonstrated numerically.
Can this method be perfected, or perhaps a more power-
ful approach be found, that will predict the logarithmic
corrections analytically?
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