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Microscopic Approach to the Structure of Liquid AlsoMn2o and AlttoNim Alloys
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A new tight-binding-bond approach to interatomic forces in liquid aluminum-transition metal (Al-M)
alloys is presented. It is shown that the bond order depends strongly on the strength of the pd hybridiza-
tion in the Al-M alloy, leading to nonadditive potentials with a strong preference for the formation of a
pair of unlike atoms and short bond distances in the Al-M pairs. This is illustrated by studying the
structural properties of liquid A180Ni20 and A180Mn20 alloys using molecular dynamics simulations and by
comparing our results with the available experimental ones.
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Since the discovery of quasicrystalline phases in A1Mn
alloys [1], icosahedral order in liquid alloys has generated
a renewal of interest. Frank [2] was the first to suggest
that the structure of liquid metals could be based on
icosahedral packing, in order to explain supercooling
eA'ects. Thirty years later, this description has been con-
firmed by molecular dynamics simulation of supercooled
liquids [3]. Very recently, Maret and co-workers [4,5]
have focused attention on the study of topological and
chemical short-range order in liquid A18pMn2p and
AlspNi2p alloys, through the accurate determination of
the partial pair correlation functions by neutron
diA'raction. The interest of such a study is that the binary
Al Mn~ — liquids in the region near 20 at. % Mn form
icosahedral phases after fast quenching while no such
phases have been prepared from Al„Nii — liquids. The
main conclusion of these experimental studies is that the
topological ordering diAers significantly in the two alloys,
the ordering extending to large distances in A18pMn2p and
of short-range order in A18pNi2p. It is tempting to corre-
late the higher degree of topological ordering in the liquid
A18pMn2p to the formation of quasicrystalline phases in

this system. From the theoretical point of view, the
determination of bond-angle distribution by means of
molecular dynamics calculations, based on a good repre-
sentation of the three partial pair distribution functions to
the limits of their accuracy, should allow us to dif-
ferentiate and characterize the local structural motifs in

the liquid AlspMn2p and AlspNi2p alloys. However, an ac-
curate simulation of the properties of transition metals
and of their alloys is still a challenging problem since
bonding is not well described by currently available pair
and embedded-atom potentials. In this paper, we present
a new approach to interatomic forces in transition metal
alloys and apply it to liquid A18pMn2p and A18pNl2p alloys
for the first time. This approach is based on the bond-
order concept [6,7], in which the actual atomic environ-
ment is replaced by a Bethe lattice. This allows for an
explicit expression of the bond order as a function of the
interatomic distance and leads to an expression for the in-
teratomic forces in terms of strongly nonadditive pair
forces. Within the framework of the tight-binding

& EF
B;,jp = ——Im G;, jp(E) dE . (2)

To calculate such a quantity, we have used the cluster
Bethe lattice reference system (CBLM) [8]. Then, it is

clear that the many-body expansion in the bond order de-
pends on the size of the cluster embedded in the Bethe
lattice. If the cluster is chosen to be the lattice site, a
very rapid convergence of the many-body expansion is ob-
tained. Moreover, as this approximation is exact up to
the fourth moment, it gives bond potentials which are
based on a better many-body expansion than the classical
used ones. As in this paper we are dealing with liquid al-

loys, we present the derivation of the bond potentials
within the lattice site approximation.

In this case, the bond order can be written as

1 +EF
Bi Jp nanPIm) — [h, (j) p(J)G, &j) (E)Gp&J) (E)]dE

(3)

where n„np are the degeneracy of orbital subspaces a, p,
respectively, and h ~l~p~J~ are the hopping energies be-
tween a state of subspace u of atom I and a state of sub-

Hiickel theory, the quantum-mechanical bond energy in a
given pair of atoms i and j is written in the chemically in-
tuitive form:

Ubond(& J) Z ~ a(i i p(j ) 2Z HiajpBjp ia ~

a,P a,P

where H;, ~~ is the Slater-Koster bond-integral matrix
linking the orbitals a, p on sites i and j together. B is the
corresponding bond-order matrix whose elements give the
diff'erence between the number of electrons in the bonding
1/ J2 ~i a+jp) and antibonding 1/ J2

~
ia —jp) states.

Bond-order potentials are similar to the embedding po-
tentials in that the bond in a given pair of atoms is con-
sidered as embedded in and depending on the local atom-
ic environment. Thus Eq. (1) represents only formally a
pair interaction and depends via the bond order on
many-atom eA'ects. This bond order can be expressed in

terms of the integral over the imaginary part of the ofI-
diagonal Green's function,
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where Z is the coordination number and p;J. the pair prob-
ability. T (I) ~(J) is the mean square of the matrix ele-
ment between a state of subspace a of atom & and a state
of subspace P of atom j [9] and the Green's function

Gp(J) can be defined by

Gp(J)(z) = z —E (J)
—(Z —1)

g pJKnr Tp(J) r (K)Gr(K) (z )2

y(sc)
(s)

The advantage of Eq. (3) is that it allows us to estimate
the different orbital contributions in the bond energy, in

particular to treat the effect of hybridization explicitly.
Assuming that the distance dependence of the bond order
is negligible against that of the transfer integral [6], we
obtain

@aNp(J) =2~ap(rij )+la, Jp ~ (6)

with the distance dependence of the hopping integral.
Here the average integrals are evaluated according to
Harrison's power law [10] [h,p(rj) =h,p(1)/rj. , n =2 for
s and p orbitals, n=5 for d orbitals]. An especially at-
tractive feature of this bond energy representation is that
the electronic forces on the atoms are simply obtained by
taking derivations of the tight-binding hopping matrix
elements. However, the strength of the interaction is pro-
portional to e, which is inAuenced not only by the local
environment around atom i, but by more distant atoms.
Although this model is relatively simple, it includes in a
natural way the nonlocal many-body effects.

The repulsive part of the binding energy is assumed to
be given by a sum over pair potentials [11],

(7)

with

For s-s and p-p interactions, the repulsive pair interac-
tion may be modeled as @,"'g(r;J) =C, ,/ri4j, while for dd-
interactions, a stronger power-law dependence Cd d/r;J is

space P of atom J. G,(I) is the Green's function of atom I
in the subspace a as given by the CBLM formalism,

Ga(J)(z) = z —Ea(J) —Zg pJJnf)Ta(J) p(J)Gp(J)(z)
P(J)

(4)

chosen [10]. C, , (a =s, p, or d orbitals) are the only pa-
rameters of the model; they are determined from the
knowledge of the experimental atomic volume and bulk
modulus of the pure metals. To treat the alloying effect,
i.e., the AB interactions, we have to determine the attrac-
tive and the repulsive parts of the heteroatomic bond po-
tential. The parametrization of the repulsive pair interac-
tion is still done using Eq. (8) with the same C, (A) and

C))(B) values. To obtain the hA, Bp hopping integrals [that
(~~rr)AB~ (~prJ)AB~ (&drr)AB~ (I)dry)AB~ and (pd&)AB]~

we use the geometrical average of hopping integrals given
in Table I, which is reasonable in the case of studied al-
loys. Consequently, no parameters are introduced to de-
scribe the alloy properties. At the end, the usual depen-
dence for both hopping integrals and repulsive terms has
been modified using the rescaling method proposed by
Goodwin, Skinner, and Pettifor [12]. This method is
known for generating improved tight-binding parameters
which are both transferable and suitable for extensive
molecular dynamics simulations. The two scaling param-
eters of the scaling smoothed step function, i.e., r, and n„
have been chosen in such a way that the step is positioned
between the first and the second nearest neighbors in the
fcc lattice and that the interactions become zero at L/2,
where L is the linear dimension of the molecular dynam-
ics cell.

The experimental study of topological and chemical
short-range order in AlgpMn2p and A18pNi2p liquid alloys
[4,5] shows that the first distances in both Al-Al and M-
M distributions (M =Mn or Ni) diA'er significantly in the
two alloys, pointing out distinct topological ordering, the
ordering extending to large distances in A18pMn2p and be-
ing short range in AlgpNi2p. This feature is emphasized
in reciprocal space by the height difference observed for
the first peak of the number-number structure factor
Siviv(q) in the Bhatia-Thornton formalism. Then it is im-

portant to know if our interactions are able to reproduce
such differences. Therefore the molecular dynamic simu-
lations of liquid A18pMn2p and AlgpNi2p alloys were per-
formed at constant volume and constant temperature.
We consider a system of 691 Al atoms and 173 M atoms
in a cubic box with periodic boundary conditions such
that the densities of the two systems are equal to the ex-
perimental ones. The initial atomic positions are random-
ly chosen. The Newtonian equations of motion were
solved using the Verlet algorithm with a time increment
of 3 x 10 ' s. Typical runs took 40000-50000 steps for
melting and equilibration and about as many for produc-
tion. The Bhatia- Thornton partial structure factors

TABLE I. Tight-binding and repulsive parameters for Al, Mn, and Ni (in eV).

sso. dda ddt ddt sdo ppa ppz spa Css Cdd Cpp

A1 —0.52
Mn —1.33 —0.65 0.32 0.00 —1.15
N i —1.42 —0.56 0.28 0.00 —1.11

1.20 —0.31 0.71 0.30
1.64 0.14
0.50 0.28

0.30
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FIG. 1. Comparison between theoretical and experimental
Bhatia-Thornton partial structures: (a) liquid AlsoMn2o (
simulation, ( ) Ref. [4]; (b) liquid AlsoNi2o ( ) simula-
tion, ( ) Ref. [5].

(PSF) shown in Fig. 1 are based on averages of over 50
independent configurations taken at intervals of 100 time
steps. They are perfectly in phase with the experimental
curves and, more particularly, reproduce the experimen-
tal height of the first and second peaks of S~jv(q) for
both A18pMn2p and A18pNi2p liquids. The theoretical re-
sults presented here allow us to point out clues that indi-
cate icosahedral order in the Sjv~(q) function of liquid
AlspMn2p, which are absent for liquid A18pNi2p. These
arguments are the following ones: (i) There is a large
difference between both liquids in the height and the
shape of the first peak [S~~(q~) =2.45 with q~ =2.85

for AlspMn2p and S~~(q~) =1.92 with q~ =2.95
' for AlspNi2p]. Since the ratio of atomic volumes of

both species is similar in both systems [see functions
S~,(q)], such a change in S~~(q) is attributed to a vari-
ation of the spatial extent g of topological ordering.
can be estimated from the breadth of the first peak of
Sjvjv(q) using the Scherrer particle broadening equation
2x/d, q~~ [5]. The values of g found for AlspNi2p and
AlspMn2p are 7 and 10 A, respectively; this means that
atoms in AlspMn2p are arranged roughly over one more
interatomic distance than in AlspNi2p. (ii) The change in

the second peak of Sjv&(q) is also quite visible; in particu-
lar, the second peak for A18pNi2p is rounded while the one
for AlspMn2p has a flat top, which from Ref. [13] could
be suggestive of short-range icosahedral order.

The first and second oscillations of the two functions
S„(q) are comparable in amplitude but those for
A18pNi2p are shifted towards higher q. The spatial extent
of chemical ordering deduced from the breadth of the
first peak is about twice as small as the one of topological
ordering. All these results are confirmed by an analysis
of the atomic arrangements between aluminum and tran-
sition metal atoms in the first shell. The experimental
distribution of the first distances Ni-Ni is split into two
components at 2.36 and 2.98 A. It is quite diff'erent from

FIG. 2. Calculated bond-angle distributions: (
AlsoMn2o, (---) liquid AlsoNi2o.

) liquid

the distribution of the first distances Mn-Mn centered at
2.89 A. Our results fail to reproduce the double-peak
structure of contacts Ni-Ni in AlspNi2p but give the gen-
eral trend that the average first and second M-M dis-
tances are shorter in AlspNl2p. Indeed, we find r~~ equal
to 2.55 A in AlspNi2p while it is equal to 2.86 A in

A18pMn2p. This difference cannot be attributed to the
very small atomic size diff'erence between Ni and Mn
atoms (note that the nearest distances are 2.53 and 2.67
A in Ni and Mn pure liquids [14]),and suggests different
local structural arrangements. This is also supported by
the first Al-Al distances significantly shorter than Mn-
Mn contacts in A18pMn2p and greater than Ni-Ni con-
tacts in A18pNi2p. Experimental data give rAlAl =2.82
and 2.74 A for AlspNi2p and AlspMn2p, respectively, while
theoretical analysis gives 2.78 and 2.76 A. The distribu-
tions of the first heteroatomic pairs are centered at the
same position (2.54 A for experiments and 2.55 A for cal-
culations), which corresponds to short distances in com-
parison with M-M and Al-Al contacts.

The fact that the topological short-range order is

different in both alloys is also confirmed by the bond-

A180Ni2O

1 s

0 2 g 6 R(A,)

FIG. 3. Ni-Al tight-binding-bond potentials (eV): ( ) to-
tal, ( ) pd contribution.
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and AlspNi20.
In conclusion, we have developed a new interatomic

force field for liquid transition-metal-aluminum alloys
which we believe contains an important improvement:
the dependence of the pair interaction on the bond order
determined by the strength of the pd hybridization. We
have shown that applications to simulations of AlspMn2p
and A18pNi2p liquid alloys are very promising. This will
allow the study of the structure-property relationship of
these materials at a level of detail not previously possible.

D.N. M. wishes to acknowledge CNRS for financial
support. A.P. thanks J. Hafner for helpful discussions.
Laboratoire de Thermodynamique et Physico-Chimie
Metallurgiques is CNRS UA 29.

FIG. 4. Tight-binding-bond potentials (eV): ( ) M-M
interaction, (---) M-Al interaction, (. ) Al-Al interaction. (a)
AjsoMnzo, (b) AlsoNi20.

angle distribution functions (see Fig. 2). For AlsoMnqo,
the calculated distribution shows a prominent peak near
63 and a broad maximum near 115, very close to the
icosahedral bond angles of 0=63.5 and 0=116.5 . For
A18pNi2p, the distribution is shifted towards smaller
bond-angle values and the peak near 60 is less prom-
inent than in AlspMn2p. These changes may now be
traced back to the variation of the interatomic forces and
of the electronic structure. For liquid AlgpNi2p alloy, Fig.
3 compares the total Al-M tight-binding-bond potential
with the partial one obtained by using the pd contribution
only. We can see that the pd hybridization is very strong
and represents the major part of the heteroatomic bond
potential, leading to a strong interaction between Al and
M atoms for both liquids. The same behavior is obtained
for liquid Al8pMn2p alloy. As shown in Fig. 4, that is
reflected in a strong nonadditivity of the bond potentials
and the consequence is the formation of a pair of unlike
atoms and short bond distances in the Al-M pairs. But
an important diA'erence is between Ni-Ni and Mn-Mn in-
teractions. The Mn-Mn interaction is found to be very
small in comparison with Ni-Ni interactions and also Al-
Al or Al-M interactions. It can be thought that it is the
peculiar behavior of Mn-Mn interactions which can ex-
plain the diAerence of topological ordering in A18pMn2p
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