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Microwave Conductivity of d-Wave Superconductors
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We calculate the microwave conductivity of a d 2 y2 superconductor in the presence of elastic impuri-
ty scattering and inelastic scattering due to antiferromagnetic spin fluctuations. The low-temperature
conductivity does not simply reflect the linear temperature dependence of the number of quasiparticles in
a d-wave system, as often supposed. We compare with recent data on high-quality YBa2Cu306. 95 single
crystals.
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Microwave surface impedance measurements of the cu-
prate superconductors provide information on the real
and imaginary parts of the long wavelength (q 0) con-
ductivity. The imaginary part of the conductivity is pro-
portional to the square of the inverse penetration depth,
and its low frequency limit determines the superfluid den-
sity. Recent experiments [1] on high purity crystals of
YBa2Cu30695 have found that the superfluid density n,
appears to decrease linearly with T at low temperatures,
in contrast to measurements on samples of apparently
poorer quality which exhibit a T variation at the lowest
temperatures [21. The linear-T variation of n, has been
interpreted in terms of an unconventional superconduct-
ing state with lines of order parameter nodes on the Fer-
mi surface [1,3].

Several authors [4-6] have attempted to account for
the measured T dependence of the penetration depth in

other samples by postulating the existence of resonant po-
tential scatterers acting as strong pair breakers in the un-
conventional state. While this model appears to describe
several aspects of the penetration depth experiments con-
sistently, it is natural to ask whether a similar approach
can be used to understand the frequency and temperature
dependence of the real part of the conductivity cr(T, Q).
In this Letter, we examine the consequences of the joint
assumptions of d-wave pairing and strong impurity
scattering for the conductivity, and compare our results
with the experimental data of Bonn et al. [7-9].

Conductivity and phenomenological model. —Bonn et
al. [7,8] use measurements of the surface resistance
R, =(8tt 0 k tT)/c at microwave frequency A, together
with the penetration depth k, to determine the conductivi-
ty o.. These authors then propose that the real part of the
conductivity can be represented by a Drude-like form as-
sociated with the excited quasiparticles,

a(T, n) =" nqp(T) (1)
m "' 1+n'r'(T) '

where n is the electron density, nq~(T) =1 —n, (T) is the
relative number of quasiparticles excited at temperature
T, and r (T) is the relaxation time in the superconducting
state. Bonn et al. find that in high purity single crystals,
there is a large increase in r(T) below T„ interpreted in

terms of a collapse of the inelastic scattering due to the
decrease in the spin fluctuation spectral weight as the su-
perconducting gap opens [10]. The increase continues
down to a temperature To of order 0.4T„where r(T),
which has increased by almost 10, reaches an impurity-
dominated limit where z appears to saturate at a constant
value. Associated with the initial increase in r(T), the
conductivity o. rises just below T„reaching a maximum
near To which for Qz «1 can be as large as 10 to 20
times its value at T, in the best crystals reported. As T
falls below To, o decreases, and is observed to follow a
linear —T behavior at the lowest temperatures measured,
at least for the 34.8 6Hz data. This may be understood
in terms of Eq. (2) if nq~(T) —T/T„as expected for a
d-wave superconductor, and r (T) is constant (as dis-
cussed below, the latter assumption does not appear to be
justified by the microscopic theory). The microwave fre-
quency plays a role when Ar =1, consistent with Eq. (1),
leading to a reduction in the conductivity peak at higher
values of 0, as noted by Bonn et al. [7,8].

This framework provides a qualitative as well as a
surprisingly quantitative description of the data. Howev-
er, it is not obvious that a result similar to Eq. (1) obtains
in the superconducting state. Furthermore, extraction of
the T« T, temperature dependence of the conductivity is
di%cult because of the problem of residual surface resis-
tance. Typically, one subtracts a term so that the intrin-
sic surface resistance vanishes at T=O, leading to a con-
ductivity o(T, A) which also vanishes. While this is ap-
propriate for an s-wave gap, where o. vanishes as
exp( 6/T), for a d-wave gap —one expects [11] that ct
approaches a finite limit of order ne /mho(0), where
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kp(T) is the maximum of the order parameter over the
Fermi surface. Here we examine the low temperature
and frequency dependence of a(T, A) for such a state.
For concreteness and simplicity, we have chosen to work
with a d 2 y2 state, with order parameter hk =Ap(T)
xcos2iti, and a cylindrical Fermi surface. However, our
conclusions apply qualitatively to all unconventional pair-
ing states with lines of nodes (point nodes in 2D).

Microscopic model. —We adopt as a theoretical frame-
work to discuss the low temperature microwave conduc-
tivity a generalized BCS model with an unconventional
(d 2 J2) superconducting state and a self-consistent t

matrix approximation for the one-electron self-energy
due to impurity scattering. The surface impedance [12]
and conductivity [13-15] in such a model have been cal-
culated for various anisotropic unconventional states, pri-
marily in the context of heavy fermion superconductivity.

The conductivity a(T, 0 ) of such a system was shown
in Ref. [13] to be determined by the imaginary part of
the bare current response. Vertex corrections due to s-
wave impurity scattering vanish identically for singlet
states at q =0, while those corresponding to order param-
eter collective modes will be negligible at low frequencies,
and in any case vanish for the one-dimensional state con-
sidered here. The final result of interest is given by [13]

a; (0) = — I dcojtanhl 2 pep] —tanh[2 p(tp —A)]jS; (ai, 0),2mn ~-- 2 2 lJ

where

S~(tp, 0) =Imp k;kt2x Q)+ Qpy (p+ 4p+

co 1 1+
co+ Co — 4p+ (p—

ture of the order parameter nodes. The crossover temper-
ature between these two regimes, T*, is found to scale as
(I Ap) ' to within logarithmic factors in the resonant
scattering limit c =0.

In the Born limit c)) 1, the crossover temperature
varies as T =hpexp[ —(Ap/I tv)]. Thus unless defect
concentrations are so high that T, 's are substantially
suppressed, the physics of the gapless state is eA'ectively
unobservable in the Born limit. The T 0, A 0 value
of the conductivity is attained only at exponentially small
temperatures, and the eAective limiting value at experi-
mentally accessible temperatures is the much larger im-

purity Drude conductivity ao, or an appreciable fraction
thereof [13,16]. Note that because of the large inelastic
scattering rate I/rt, (T, ) —T„ the quantity ap is much
larger than the actual normal state conductivity a(T, )
for clean samples. As experiments [7,8, 10,17] clearly
show a strongly temperature-dependent conductivity at
low temperatures, we focus here primarily on the strong-
to-intermediate scattering limit, c 1.

Gapless regI,'me. —In the limit 0 (( T, we may put
[tanhpai/2 —tanhp(tp —0)/2]/20 —r)f/rltp in Eq.
(2), and require therefore only a small-co expansion of the
kernel S(tp, 0). We focus first on the physics of the gap-
less regime, in the unitarity limit c=0. In this case the
renormalized frequency may be expanded for m(T*, co

=i(y+bto )+ awcphere y, a, and b are constants. For
concreteness, we study the d„2 y2 case, where the con-
stant y satisfies the self-consistency relation (y/hp)
=(trl )/[24pin(4dp/y)] for I &&Ap. It is therefore clear
that both y (or T*) and the residual density of states
N(0) vary as (Ihp)' up to a logarithmic correction.
The constants a and b are easily found to be —,

' and 1/8y,
respectively. These estimates enable an immediate evalu-
ation of Eqs. (2) and (3) in the gapless regime, yielding
a =app[l+(tr /12)(T/y) ], where opp=ne /mtrhp(0)

Here we have put co+. =co(co+ iO) and co'+. =co(co —0
~ iO), where co —co =Zp is the averaged self-energy due
to impurity scattering in a t-matrix approximation,
&p =I Gp/(c —Gp ). The parameter I =n;n/trNp is a
scattering rate depending only on the concentration of de-
fects n;, the electron density n, and the density of states at
the Fermi level, No, while the strength of an individual
scattering event is characterized by the cotangent of
the scattering phase shift, c. The integrated diagonal
Green's function averaged over disorder, Gp ———i(t'ai/(to
—hi, ) t ), depends on the renormalized frequency co

and must therefore be determined self-consistently. Fi-
nally, we note that gp~ =sgn(cp) [co~ —Ai, ] ' and

gp~ =sgn(cp —0) [(co'+. ) —Ak] ' are chosen to have
branch cuts such that Imgp+ & 0, Imps+ & 0, and

Imps & 0. The conductivity [(2) and (3)] reduces in

the normal state limit hj, 0 to the Drude form, o.
;~

=8i~ap/[I+(Qrjv) ]—=Bi~ajv(Q), where ap= ne re/m, —
and (2rtv) ' =I lv—= I /(1+c ). In the cuprates, a(T, ) is

determined by the inelastic scattering rate 1/r t (T, )
—T, )&1/r~, as discussed below.

It is possible to obtain analytical results for a(T, 0) in

various limiting cases. From earlier studies of unconven-
tional superconductors, it is well known that for suf-
ficiently small impurity concentrations, the temperature
dependence of transport coefficients may be quite
diflerent in two distinct low temperature regimes,
separated by a crossover energy T* [6]. At the lowest
temperatures, T & T*((T„a so-called "gapless" regime
exists, in which all superconducting properties reflect the
temperature dependence of their normal state analogs, al-
beit with reduced coefficients scaling with the residual
density of quasiparticle states at T=O, N(0) &Np. At
somewhat higher temperatures, a "pure regime" obtains,
where a self-consistent treatment of the self-energies is
not required, and transport coefficients generally follow
power laws in temperature reflecting the detailed struc-
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for a d„2 y2 state. Note that if 1/r (T, ) =T„and
2hp/T, =6, then crop=(I/3rr)cr(T, ). In Fig. 1 we present
the results of a full numerical evaluation of Eqs. (2) and
(3) at n=0.

Pure regime I.f—, as the authors of Refs. [7,8] believe,
their samples are of suSciently high quality that they ob-
serve a linear-T power law for &,(T) characteristic of a
clean d-wave superconductor in their experiments [1],
this would imply that the crossover temperature T* for

these samples is quite low, perhaps ~5 K, the minimum
temperature at which data were taken. Thus the "pure"
limit is presumably also applicable over the entire tem-
perature range, 5 K ~ T ~ 90 K, for the conductivity
data presented in Refs. [7,8]. The pure regime approxi-
mation for a (T, 0 ) is obtained by neglecting self
consistency in the calculation of Zo, i.e. , replacing
pi=co —Zp(co) by cp —Zp(cp). We find in this limit (y
«T«T, )

cr„,(n) = dcu - Im
ne —Bf cp I

m " —- c)cp hii n i/r —(cp) (4)

(5)

For the opposite limit 0 » I hp/T we obtain

~xx
ne ' z2I 4~o2

2 Q 2 T

We note that pair correlations for simple impurity
scattering in unconventional superconductors always give
rise to a nontrivial dependence of 1/r on energy, in the
weak as well as the strong scattering limit. Thus there
appears to be no microscopic justification for the assump-
tion of a constant relaxation time in the impurity-
dominated regime leading to linear-T behavior. We have
seen, however, that the form cJ—nq~r/[I +(Qr) ] is re-

C3

with r ' = —21mZp(cp), valid for all scattering
strengths. It may be of relevance to note at this stage
that cr„„(T,A) follows a clean linear-T power law if I/r
is arbitrarily taken to be a constant independent of energy
as postulated by Bonn et al. for their low-temperature
data. However, the microscopic theory in the case of uni-
tary scattering is instead found to give I/r = rr I hp/
2cpln (4hp/cp), yielding for 0 « I hp/T

2 T 2 4~o
xx

3
~o ln

Ao T

markably close to being correct, with the exception that
one must formally integrate over the relevant energy-
dependent quantities.

For the Born limit, c))1, the relaxation rate in a
d, 2 y2 state is given simply by 1/r (co) = I cp/hp for
co«ho. In this case, for the pure regime with Ai «1,
Eq. (4) reduces to o„=ap» opp. We have included de-
viations from the unitarity limit in Fig. 1 to illustrate how
the low-frequency Born limit is approached. The down-
ward curvature of the dashed curve in Fig. 1 at the lowest
temperatures is indicative of the transiton from the pure
to the gapless behavior.

Dynamic effects in impurity dominated -regime. In-
the crossover regime between the hydrodynamic (Qr
« I) and collisionless (Qr » I) limits, we obtain results
for the conductivity which interpolate between Eqs. (5)
and (6), and which can display a nearly linear-T behavior
over a substantial range. We illustrate this crossover in

Fig. 2, and note in particular the transition from the T
behavior at low frequencies to the quasilinear behavior
for n/I =1.

Inelastic scattering. —It is possible to try to fit the con-
ductivity data over the entire range using a model self-
energy representing the sum of impurity scattering and
an inelastic scattering rate term due to spin fluctuations

0. 1 0.2 0.3

FIG. 1. Normalized conductivity o/crpp vs reduced tempera-
ture T/T, for a d„2 2 state for ti =0. Upper solid curve,
I =0.01, c=0; lower solid curve, I"=0.05, c =0; dashed curve,
I =0.01, c =0.3.

0.0 0.2 0.3

FIG. 2. Normalized conductivity cr/crop vs reduced tempera-
ture T/T, in the unitarity limit, c =0, for 0 =0.01T,
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T,=0.002

0.80.0 0.5 1.0
T/T,

FIG. 3. Normalized conductivity o/ooo vs reduced tempera-
ture T/T, with I"=0.005 and c =0, including inelastic scatter-
ing according to Ref. [18]. Upper curve, fl =0.002T„' lower
curve, 0 =0.02T, .

0.3

[18]. While this procedure neglects the real part of the
spin fluctuation self-energy and possible vertex correc-
tions, it provides an indication of the relevant energy
scales and the role of the inelastic scattering mechanism.
Here we adopt for the "inelastic part" of the self-energy
a term incorporating the electronic scattering rate due to
exchange of antiferromagnetic spin fluctuations as de-
scribed in Ref. [19]. Such theories have been used to de-
scribe the normal state NMR properties of the high-T,
cuprates [20], and in the superconducting state predict
nuclear spin-lattice relaxation rates and inelastic scatter-
ing rates varying as (T/T, ) at low temperatures [21].
In Fig. 3 we plot the calculated conductivity for two fre-
quencies chosen to correspond to the 34.8 and 3.6 0Hz
measurements of Bonn et al. [7,8]. We have chosen the
impurity scattering parameters I =0.005, c =0 to best fix
the positions of the peaks for the two frequencies, as well

as the peak heights relative to the normal state conduc-
tivity values. It is interesting to note that this choice
places the higher-frequency result in the dynamical cross-
over regime where the low-temperature conductivity is

nearly linear in temperature.
In conclusion, we have presented results of a simple

theory of losses in a d-wave superconductor. In the clean
limit T*«T« T„we found that the conductivity has a
Drude-like form in which an averaged energy-dependent
lifetime enters. For microwave frequencies small com-
pared to the average relaxation rate, a varies as T at low

temperatures, approaching a residual value of order
ne /rr/r, om as T 0 [21]. At higher microwave frequen-
cies Ar =1, a nearly linear T dependence may result, but
the lower frequency T dependence of the conductivity
differs from the linear T dependence reported. It is not

clear at this writing to what extent the large residual
losses reported in Refs. [8,9] may be considered intrinsic
to the sample; final conclusions regarding the applicabili-
ty of our model must be reversed until these questions are
clarified.
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