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We introduce a solvable model of a one-dimensional electron gas interacting with an array of dynami-
cal scattering centers, whose state is specified by a pseudospin variable. In the dilute limit, for frequen-
cies co and temperatures T below the single-center Kondo scale but above a coherence scale h, , the phys-
ics is governed by the fixed point of the single-impurity two-channel Kondo problem, and the physical
properties are reminiscent of the normal state of the high-temperature superconductors. As m and
T 0, three susceptibilities are equally divergent: (I ) conventional, spin-singlet even-parity pairing, (2)
composite spin-singlet odd-parity pairing, and (3) odd-parity pseudospin.

PACS numbers: 74.20.Mn, 75.10.3m, 75.25.+z

where Ho is the kinetic energy:

Ho =ivF z, &
dr [&~ r3, +t —

p2 r)r tirz ] . (2)

Here tlt1 (r) and tlt2 (r) create, respectively, a right- and
left-moving electron at position r and with z component
of spin a= ~ 2. H~ is the coupling between the electron

gas and the dynamical scattering centers:

0 ~

=
Julia g rtt[@~ (R) titl (R) —

tlt2 (R) tlr2 (R)]
R, o.

+JJa X [rR e
' '

y2, (R)tl i,~(R)+H.c.]
R,a

(3)

where rR are the pseudospin-half operators representing
the degrees of freedom of the scattering center at position
R, a is a lattice constant, and kF is the Fermi wave vec-
tor. We assume throughout this paper that J& « 8'
where W= trvF/a is the bandwidth.

It is also assumed that r has the symmetry of a local
dipolar model [1]; in particular, rR couples to the local
electronic current, and hence, like the current, it must be
odd under time reversal and parity. This coupling is an

In this paper we consider a one-dimensional version of
a model we have used previously [I] to express the conse-
quences of frustrated phase separation in high-tem-
perature superconductors. It is a solvable limit of a one-
dimensional electron gas interacting with an array (which
may or may not be ordered) of dynamical scattering
centers and, as such, it is also of considerable interest in

its own right. The model is an orbital analog of the Kon-
do problem in which the scattering center is specified by a
pseudospin variable which couples to the orbital states of
the electron gas rather than to their true spin. Previous
studies have considered a single scattering center: Here
we generalize the model and the solution to an array.

We shall work directly with the field-theory version of
the model, although it is easy to define an equivalent lat-
tice model [2]. The Hamiltonian is

H =Hp+H

important feature of our model, and it is responsible for
some of the unusual consequences.

It is easy to see that there are two conserved quantities:
the total charge of the conduction band,

Q = dr g[tit~ tlt~ ~+ yq ~tlt2, ~]

and a conserved current QJ =fdr pJ(r), where

pj(r) g [tit], tltl, tir2 p2, ]+ Jr R&(» —R) . (4)

In the limit of a single scattering center at the origin,
the model may be mapped into the two-channel Kondo
problem by replacing y2 (r) by the right-going field

y2 ( —r) [3]. Then the labels (1,2) and o may be re-

garded as pseudospin and flavor, respectively, and the
Hamiltonian defined in Eqs. (1)-(3) is precisely the an-

isotropic two-channel Kondo problem, solved in a previ-

ous paper for the "Toulouse limit" AJli: Jii trvF/a =0
[4]. All of the results obtained before [4] carry over un-

changed to the present problem: In particular, all of the
known universal properties of the isotropic (J~~=J&)
two-channel Kondo problem [5] are shared by this model

[6]. The low-frequency and low-temperature behavior is

governed by a single nonuniversal energy scale I (the
Kondo scale) which, in the Toulouse limit, is I =Jia/
Z'V F.

Turning now to the array, we may anticipate some as-

pects of the solution on general grounds. There are two

important energy scales: the single-center Kondo scale I

and a coherence scale 6, which characterizes the induced

interactions between neighboring pseudospins. 5, is a cal-
culable function of J~/vF and the concentration of pseu-

dospins, c. Since 4, 0 as c 0, there must be a dilute
limit c«c~ in which I ))h, . In that limit, there are three
distinct regimes of temperature: (1) T) I, where the
scattering from the pseudospins is weak; (2) 4« T« I,
where uni versal single-impurity Kondo physics is ob-

served; and (3) T« 5, where the pseudospins form a
state with long-range coherence, in which the critical
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fluctuations associated with a single impurity are cut off
and, as we shall see, long-range pairing fluctuations are
enhanced. The opposite extreme is the dense limit c))c2,
where h, ))I and hence, at T—3„ the system crosses
directly from the high-temperature disordered state to the
low-temperature pseudospin-coherent state. We will
show below that both cl and c2 are -I /II; hence, there
need not be a large crossover region between the dilute
and dense limits.

We now show how this picture may be derived by using
a combination of exact results and well-controlled ap-
proximations. The trick of replacing y2 (r) by a right-
going field does not work for the array: Consequently, we
proceed by bosonizing the Hamiltonian in its orignal
form, using the standard one-dimensional relation be-
tween Bose and Fermi fields [7],

y, (r) = [2tza] 't exp[i@, (r)j, (5)

where @b =Jz[f'dr'II (r') ~p (r)] (with lower and
upper signs corresponding to b = I and 2, respectively)
and P (x) and II (x) are canonically conjugate Bose
fields satisfying [P (r), II (r')] =ib(r —r')b . Then the
Hamiltonian may be written in terms of a spin field

p, (r) =[pl —pt]/J2 and a charge field p, (r) =[pl+pl]/
J2, together with their conjugate momenta II, and II„ in

the form H =H, (Jii) +H, [OR] where

H, [0~] = dr' [II, +(p,') ] —8i(r)cos(pp, ) '. (7)

Here

c/i(r) =(—2J~/tz)ge(0~) zn6(r —R)
R

and

e(OR) =e cos(On)+e~sin(Og),

with OR =2kFR+ J2tzp, (R). It will be useful to consider
arbitrary values of P in H, [OR], although P =2tr for the
model as defined. The Hamiltonian H, is independent of
the spin fields, and H, depends on the charge fields only
through the appearance of p, (R) in OR. Consequently, it
is possible to separate spin and charge by making a uni-
tary transformation to rotate the z spins through an an-
gle [ —-J2tzp, (R)] about the e, direction:

U H U =H, (6J i') +H, [Og ]+const, (8)

where U =exp[ —iv 2tzgng, (R) zR] and AJii =Jii —tzL'F'/

a. The transformed Hamiltonian involves H, [Og], where
Og —=2kFR is independent of the charge fields.

When hjii =0, the canonical transformation U removes
the z pseudospins entirely from the charge part of the
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H, (J ) =
I dr[II, +((t,')']+ Jgav2/trg z'II, (R),2" R

(6)
with p'—=B„P, and

Hamiltonian H, in Eq. (6) and from the conserved
current pJ in Eq. (4). Moreover, the operators e(0&) zg
commute with the transformed Hamiltonian so their ei-
genvalues may be used to label the eigenstates. Thus
coherence of the array is achieved via an Ising ordering of
the pseudospins. In fact, it will be seen that the effective
interaction between pseudospins favors the "uniform
state" in which e(0&) zR =

2 [or equivalently e(OR)= ——,
' ] for all R. It is important to stress that this result

does not mean that the physical pseudospins are ordered.
The point is that e(Ott). ztt =U e(Og). znU: Thus in
terms of the untransformed variables, the uniform state
has e(Ott) zR =

2 for all R. But e(Og). zR depends on
both zn and p, (R); i.e., it is a composite operator, in-
volving the physical pseudospins and the charge density
of the conduction electrons. Moreover, this composite or-
dering is not easily observable because it does not have a
simple expression in terms of the original fermion vari-
ables. From these results it also follows that, at low
enough temperatures,

—
I R —R'I /4 T (T)

(zn zR)U —cos[2kF(R —R')]e ', (9)

where ()U is the thermal expectation value with respect
to the transformed Hamiltonian U HU, and g, (T)
—e . Here h, , whose value will be estimated below, is

the energy to create a kink in the pseudospin ordering
such that e(OR) zg = —

—,
' for R (0 and e(Ott)

=+
2 for R ~ 0.

A number of general properties of the model may be
inferred by using the idea that the low-energy, long-
wavelength properties are governed by a single zero-
temperature fixed point, or a few possible isolated fixed
points. Any solvable model in the basin of attraction of
the relevant fixed point will have the same universal low-

energy behavior as the system of physical interest. For
the orbital Kondo array, after the canonical transforma-
tion (8), the spin fields are described by a generalized
sine-Gordon Hamiltonian H, [OR] in which the cosine
term is finite at a discrete set of points R. As for the or-
dinary sine-Gordon model, the Hamiltonian may be
mapped into free fermions at the point p =4tr, and
reduces to free bosons for P 0 [7]. The problem may
be solved exactly in these limits, and it is found that both
have the same low-energy physics, apart from the energy
scale. Thus, the same fixed point must also govern the
low-energy physics for the case of physical interest,
p =2tr, unless it is separated from both the free-fermion
point and the free-boson region by phase transitions.

It follows that the physical properties of the model
defined in Eqs. (1)-(3) may be deduced by solving either
the free-fermion or free-boson model and then using scal-
ing [7] or renormalization-group [8] arguments to obtain
the energy scale as a function of p. In this way it is found
that the model possesses the following properties: (I ) At
T =0, the low-lying excitations (solitons) are massive fer-
mions [7] with energy spectrum E, (k) =+ [(vFk)
+6, ] 't, where A, will be evaluated below for dilute and
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dense impurity concentrations. (2) There is a corre-
sponding correlation length, g, =vF/A„which determines
the length scale over which the ground state can be de-.
formed. (3) The energy scale of the pseudospin kink is

finite so at zero temperature the transformed pseudospins
are ordered.

It is possible to obtain further quantitative results in

various limits. Of these, the easiest to treat is the high-
density limit in which c(,(c,J&)/a»1. Here the "granu-
lar" character of cF&(r) may be ignored so that, for the
ground state configuration of the pseudospins, we may
approximate 8&(r) = J&c, while for the one-kink con-
figuration, 0"&(r) = J&ce(r). Once this approximation
is made, 0, is identical to the quantum sine-Gordon
Hamiltonian and we may use known exact results [7,8] to
show that A, =6, [1+6((J~/W) )], where

po Wf (p) [ J /W] 4m/isa P 1 (io)

&(IR —R'I) = ', [I+@(»F/JilR —R'I)]
4IR —R'I

The characteristic energy of an isolated scattering
center is the Kondo scale I . Therefore the dilute limit re-
quires that d, (b) « I, where b —a/c is the average spac-
ing between scattering centers. Using Eq. (12), this con-
dition is equivalent to c ( c2, where cz —I /W —[J&/W] .

Note that, as stated above, there is a single crossover con-
centration c

&

—c2 for the physically interesting case
P =2tr. We will show elsewhere [2] that 5, —A in both
the dilute and dense limits.

The low-temperature (T (6) behavior is governed by
the fluctuations of the various order parameter fields. A
one-dimensional system does not have a broken continu-
ous symmetry but may have a zero-temperature critical
point at which the space-time correlation functions
C,(r, r, t —t') =(O, (r, t)O, (r', t')) of operators O, (r, t)
are power laws, indicating which type of long-range order

and f(p) is a nonuniversal function of 6(1). Similarly,
the pseudospin interaction energy 6—6, . The regime of
validity of the dense limit may be determined self-
consistently by solving the implicit equation cia, (c|,J&)/
a —1 to fin

[J /W] 4Ã/[4K P 1

In particular, for p =2tr, c 1
—[J&/W] —I /W, and

A, (cl) = I [4]. Thus, the dense limit may also be re-
garded as the range of concentrations for which 3,, ) I .

In the dilute limit, c((c2, the granular character of 8&
is essential. The energy of a single pseudospin kink,
which is equal to the energy of a compensating distortion
of p„depends only on bulk properties, since the distance
between neighboring scattering centers is large compared
to any intrinsic length scale in the problem. Specifically,
the energy A(IR —R'I) to create a pseudospin kink be-
tween the scattering centers at sites R and R' may be
evaluated in powers of 1/IR —R'I to give

C(r, r', t ) =i&(t )([j(r,t—),j(r')]) . (i 4)

After the canonical transformation (8), the two parts of
j(r) in Eq. (13) are uncorrelated, so they give separate
contributions to C(r, r', t). Since pJ is a conserved quan-
tity, it leads to a 8(cu) term in the frequency-dependent
conductivity. This delta function is replaced by a broad
"Drude" peak oD(to) in the presence of static disorder
and/or electron-phonon coupling, but it is unafiected by
the dynamics of the pseudospins, from which it is decou-
pled. The second term in Eq. (13) gives an anomalous
contribution to the conductivity:

r 2
2aaJii g, , (co, T)

cT~ co, T =/e 15

where

might be realized in higher dimensions. (The system is
not invariant under a space translation so the correlation
functions will, in general, depend on r and r' separately. )
In the Toulouse limit, three distinct operators have corre-
lation functions which diverge in the same way when
T 0: (1) conventional sin~let, even-parity supercon-
ducting pairing, Oss =[pl i@21+I/f2 ilgwu 1]; (2) compos-
ite, spin-singlet, odd-parity superconducting pairing,
O„z(r, t) =@21(r,t)@21(r,t)r~, (t), where R, signifies
the pseudospin site closest to position r; and (3) the
orientation of the pseudospins, 0, =sR. These results
may be derived by introducing the boson representation
(5) and carrying out the canonical transformation (8) to
show that the dominant long-time, long-distance con-
tributions to the correlation functions are proportion-
al to the product of (r ~ s g )U and 6/, =(yi. , (r, t)
xy/, (0,0))U. The former is defined in Eq. (9); it falls
exponentially over a length scale g, which itself diverges
exponentially with decreasing temperature. Consequent-
ly, when T ( h, , the dominant decay of all three order pa-
rameter correlation functions is determined by Gi„. all
fall as 1/Ir I and their Fourier transforms diverge like 1/T
as T 0.

In order to evaluate the electrical conductivity, we

adopt the most natural definition of the current operator
in the context of the one-dimensional model. First of all,
we define a "free charge" as eZ [yl yl ~+yq yp, a],
and a "bound charge" associated with the pseudospins:

pb, „„d(r)=e*gtt rgb„8(r —R) (i.e., we treat the pseu-
dospins as electric dipoles). The free-charge current may
be deduced from the equation of continuity,

j (r) =t.FpJ+ —AJiia g

stan

8(r —R),2 (i 3)
7r R

where pJ is defined in Eq. (4). This has the property
that, for h Jll =0, the current is conserved and hence the
critical amplitude of the interesting contribution to the
conductivity vanishes. In order to obtain the generic be-
havior it is necessary to perturb about the Toulouse limit.
The Kubo formula relates the conductivity to I/co times
the Fourier transform of the current susceptibility:
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ab (to, T) =i (e ) 2tog „(to,T ) . (i7)

Since tr, (to, T) and tTb(to, T) depend only on the dynam-
ics of the pseudospins, they are insensitive to other per-
turbations to the model, such as electron-phonon scatter-
ing.

In the dilute incoherent limit (5« T and c«c~), the
diAerent pseudospins are essentially independent, so we

may use the general single-impurity results obtained pre-
viously [4,9, 10],

g,
"

b (to)-c8, b t anh(p co/2)
I +co

valid for arbitrary J~~ and for co, T&& W. From Eqs. (15)
and (18) it may be seen that a, (co, T) —1/T if co« TI
and —1/to if T« to« I. Moreover, a, (co, T) is directly
proportional to the impurity concentration c, and thus it
is best regarded as a paraconductivity reflecting enhanced
composite pairing correlations over a wide range of tem-
perature and frequency [4]. (Note these expressions for
the conductivity are qualitatively diAerent from those ob-
tained by Ludwig and Af[]eck [5], as they should be since
they relate to different realizations of the two-channel
Kondo problem with diA'erent forms of the current opera-
tor. ) It is more difficult to obtain a simple closed form
expression for the conductivity when T &h, . A mean-
field estimate [2] for T =0, where the transformed pseu-
dospins are ordered and experience a Weiss field h, gives

cr, -crco/[h 4+ co'(r' —h ')+ to'] .

Consequently, a, —cto/h, when co«h /I .

Finally, we comment on the nature of the array of
scattering centers in the case where they are annealed.
For strong repulsive interactions between scatterers, we

expect a roughly uniformly spaced lattice. However, we
find that there is an induced interaction between scatter-
ing centers that favors dimerization or even phase separa-
tion under appropriate circumstances. The coherent
low-temperature physics is the same in the dilute and
dense limits, and is insensitive to the precise distribution
of the scattering centers; the distribution is important
only at intermediate temperatures.

The finite-temperature properties of the dilute orbital
Kondo lattice are remarkably reminiscent of the observed

1 f OO

g, b (to, T ) =—g dt e' '( [r tt (t ), r tt ]),
L g, R'~ 0

with I equal to the length of the system. Similarly we
find that the bound-charge contribution to the conductivi-
ty is given by

normal state properties of the high-temperature super-
conductors [1]. In particular, we have found a T-linear
and co-linear contribution to the resistivity which is in-
sensitive to all other details, including scattering from or-
dinary impurities and phonons. Moreover, we have found
a crossover at a temperature T—h, to a low-temperature
state in which the pseudospins are coherent and correla-
tions of two distinct pairing operators are substantially
enhanced. In higher dimensions, where the crossover be-
comes a true phase transition, the physics of the orbital
Kondo lattice might lead to diA'erent kinds of supercon-
ducting order parameter, depending on the details of the
model and possibly on additional interactions not includ-
ed in the Hamiltonian studied here. In a forthcoming
publication we shall expand on these results and further
discuss their relevance for high-temperature superconduc-
tors.

V.J.E. was supported by the Division of Materials Sci-
ence, U.S. Department of Energy under Contract No.
DE-AC02-76CH00016. S.K. was supported in part by
the NSF under Grant. No. DMR-90-11803.

[I] V. J. Emery and S. A. Kivelson, Physica (Amsterdam)
209C, 597 (1993).

[2] V. J. Emery and S. A. Kivelson (unpublished).
[3] I. Aleck and A. W. W. Ludwig, Nucl. Phys. B360, 641

(1991).
[4] V. J. Emergy and S. A. Kivelson, Phys. Rev. B 46, 10812

(1992).
[5] For a review, see A. W. W. Ludwig, in "Quantum Field

Theory and Condensed Matter Physics, " edited by E.
Brezin, Yu Lu, and S. Randjbar-Daemi (World Sci-
entific, Singapore, to be published).

[6] We have shown that it is possible to obtain the usual
value [5] of the Wilson ratio for the one- and two-channel
Kondo problems by using the technique of Ref. [4]; P. B.
Wiegmann and A. M Finkel'shtein, Zh. Eksp. Teor. Fiz.
75, 204 (1978) [Sov. Phys. JETP 4$, 102 (1979)], have
previously obtained the usual value [5] of the Wilson ratio
of the single-channel Kondo problem, working at the
Toulouse limit.

[7] V. J. Emery, in Highly Conducting One Dimensional-
Solids, edited by J. T. Devreese, R. P. Evrard, and V. E.
van Doren (Plenum, New York, 1979), p. 327; Y. A. Fir-
sov et ai. , Phys. Rep. 26, 287 (1985).

[8] P. Wiegmann, J. Phys. C 11, 1583 (1978); D. J. Amit et
al. , J. Phys. A 13, 585 (1980).

[9] A. M. Tsvelick, J. Phys. (Paris) 2, 2833 (1990).
[10] Related results have been obtained by D. L. Cox, Physica

(Amsterdam) 153-155C, 1642 (1988).

3704


