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We consider the integer quantum Hall efI'ect on a square lattice in a uniform rational magnetic
field. The relation between two different interpretations of the Hall conductance as topological
invariants is clarified. One is the Thouless —Kohmoto —Nightingale —den Nijs (TKNN) integer in the
infinite system and the other is a winding number of the edge state. In the TKNN form of the Hall
conductance, a phase of the Bloch wave function defines U(1) vortices on the magnetic Brillouin
zone and the total vorticity gives o ~. We find that these vortices are given by the edge states when
they are degenerate with the bulk states.

PACS numbers: 73.40.Hm, 02.40.—k

After the discovery of the integral quantum Hall effect,
the problem of electrons in a magnetic Geld has been
studied from a geometrical point of view [1—8]. The gauge
invariance discussed by Laughlin [3] as well as the role
of the edge states emphasized by Halperin [1] are central
to these investigations. The Hall conductance o. „ofthe
system has a fundamental topological meaning as first
discovered by Thouless, Kohmoto, Nightingale, and den
Nijs (TKNN) [2,4,5]. Their work is performed in a system
without edges and o.

„

is expressed as an integral that
represents the Chem number of the U(1) bundle over
the magnetic Brillouin zone. This is an invariant on the
magnetic Brillouin zone and supports the high accuracy
in the quantization of the Hall conductance. However,
the topological role of the edge state is unclear since the
TKNN integers are written in terms of the bulk wave
functions.

Recently the Hall conductance in a system with edges
has been treated from a topological point of view [6]. In
the work, o.

„

is written as the winding number of the
edge state on a complex energy surface that is a high
genus (g & 1) Riemann surface. The winding number
and the TKNN integer are apparently diferent. In this
paper, we clarify the connection between these two dif-
ferent numbers, i.e. , elucidate the relation between the
Hall conductance of the infinite system without edges
and that of the system with edges.

In the Landau gauge, a tight-binding Hamiltonian for
electrons on a square lattice in a uniform magnetic field is
givenbyH = tP „(c+—i„c~„+c„+ie' c „+
H.c.), where c

„
is the annihilation operator for a lat-

tice fermion at site (m, n). We assume that the magnetic
field per plaquette P is rational; i.e. , P = p/q with mutu-
ally prime integers p and q. First we consider an infinite
system [2,7]. Since the system is periodic in y direc-
tion, the single particle wave function 4

„

is written
as i' „=e'"&"@ (kz), k& e [0, 2~]. The Schrodinger
equation then reduces to a one-dimensional equation with
a parameter k„as

—t(iIi~+i(k„)+ iIlm, (k„)) —2t cos(k„—27rpm) iI (k„)

= E(kv)@ (k„).(1)

2
g3)

' bulk
g dk~dk„[ 7'k x As (k) ]„(2)

A'(k) = (u'(&)[V'k[u'(k)) = P,' , u' (k)
V'ku~m(k) and usm is obtained from u& by normalizing
as (u~ (k) ~u~ (k)) = 1. When the Fermi energy lies in the
jth gap, the Hall conductance of the system is given by

i o' &. The wave function ~u~(k)) forms a U(l) fiber
bundle on the magnetic Brillouin zone and the integral
Eq. (2) is the Chem number which is a topological invari-
ant of the U(1) bundle. This gives a topological meaning
to the Hall conductance in the infinite system (without
edges). In Eq. (2), there is a gauge freedom which comes
from the phase ambiguity of [u(k)). One can use an-
other gauge to calculate crs „bythe gauge transformation,
[v~ (k)) = e'I(") ~u~ (k)) (f:real). Since the Chem number
is invariant under this gauge transformation, o» is well
defined. If one uses the Stokes theorem in Eq. (2), cr

„

is

always zero since there is no boundary in the magnetic
Brillouin zone TMBZ. However, this procedure is incor-
rect. The phase of the wave function is not well defined
globally over the magnetic Brillouin zone. Therefore one
can not apply the Stokes theorem globally.

Following Ref. [4], we divide TM2Bz into several regions.
We require that iIJs (k) is an analytical function of k and

This one-dimensional system has a period q. Therefore
t,he Bloch theorem tells that the Bloch function 4 sat-
isfies iII (k, k„)= e'" u (k, k„)where u ~~(k)
u (k) and k c [0, 2'/q].

The spectrum of 0 has been investigated extensively
and it consists of q energy bands [2,7,8]. The Hall conduc-
tance o „ofthe filled jth band (j = 1, . . . , q) is calculated
using the Kubo formula and an adiabatic approximation
as [2,4,7]
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4,"(k„)= 4~ (k„)=0. (6)

We assume that L is commensurate to the flux P; that
is, L = q/ with some integer ). Mathematically the
di6'erence between systems with and without edges cor-
responds to the difference in the boundary condition. For
the system without edges, the condition follows the Bloch
theorem as

C~ 1+ (k„)= p4~ &(k„),p = e'q" (k c [0, 27rjq ]). (7)

k„onthe magnetic Brillouin zone and choose 4~& ——1, i.e. ,

u&
——e '" . By using a geometry with edges, we give be-

low an explicit construction for W (k) that satisfies these
requirements. This convention is not compatible with the
periodicity of the magnetic Brillouin zone. However, we
avoid this diKculty in the following by using the freedom
of the gauge transformation.

We denote the zero points of the 4~(k) in the rnag-
netic Brillouin zone by k = ki, . . . , k~ . At these points,

2

uq(k) = 0 also. Then we divide the whole magnetic Bril-
louin zone TMBZ into ¹~ + 1 parts as follows:

f k + +MBz lk —k.*I «@'q(k.*) = 0) (3)

N~

Ro —TMBz U R. ~ (4)

where s = 1, . . . , Nz and e « l. In the local regions
R;, we use a phase convention for ]U~(k)) to calculate
Ap(k) as U~ (k) = u~ (k). In the region Ro, we use
another phase convention for ]V(k)) to calculate A~(k)
as Vq(k) is real and positive. This convention in Ro is
compatible with the periodicity of the magnetic Brillouin
zone, provided we choose V~ (k) = u~ (k)e '~&"&, where
((k) = 9 lnu~~(k) = Bin u~~(k). This is well defined since
4'~~(k) = e' " uq(k) g 0 in Ro. Then using the Stokes
theorem in each region, we get from Eq. (2)

1' "'"= —) . dk. [A' (k) —A' (k)]
OR,

N~
1= —) dk 7'((k)

BR,

N~
1= —) — dk 7'9 ln @q(k),

BRs

where we use $&z dk 7'Bine'q" = 0 in the last line.
s

Since the zero of the wave function at k = k,* gives a
vortexlike structure, o.~„is obtained as the sum of the
vorticity in the magnetic Brillouin zone [4].

Now let us consider a system in a strip geometry with
edges; i.e. , the system size is infinite in y direction and
finite in x direction [6]. We apply the method of transfer
matrix and use results from the nonlinear lattice theory
[6,9]. Here we only state the results of Ref. [6] relevant
to our purpose. The boundary condition for the strip
geometry is

(9)

su= QA(z)z —4

(z —Ai)(z —A2) (z —A2q i) (z —A2q),

where A~, j = 1, . . . , 2q denote energies of the band
edges.

Also we need two sheets (Riemann spheres R+ and R )

N ow let us write Eq. (1) using the transfer matrix as

m+i( i, ) M ( k) ~( y) ()
(e, k„) ' " @,(e, k„)

f' —e —2 cos(k„—2~/m) —1
M (e, ky) =

]

where e = E/t is a dimensionless energy. In this for-
mulation, all solutions are obtained by diferent choices
of initial conditions, @o and 4y. For the boundary
condition in the strip geometry, Eq. (6), we use the
condition 40' —— 0 and 4z' ——1. Then the roots
of the equation @I' —— [M(e)]2i ——0 correspond to(~)

the energy eigenvalues of the system where M(e)
M(e)qM(e)q i M(e)2M(e) i.

The energy eigenvalues of the strip system are classi-
fied into two classes: (i) the spectrum of the edge states
which is independent of the system size L; (ii) the com-
plementary point spectrum that converges into energy
bands in the limit I~ —+ oo. There are q energy bands
and each energy gap has one edge state; i.e. , there are
g = q —1 edge states. The energy of the edge state pz
(j = 1, . . . , g) is determined by a q site problem [6],

Mgi(p~) = @~'1(p~) = 0. (10)
On the other hand, the Bloch function (without edges)

satisfies Eq. (7). Therefore iIJi and 4'o form an eigenvec-
tor of M with the eigenvalue p as

I'@'" l (@~'1 (,) l
(') =

'

'
» (,)

= ') ("
In Eq. (11), the energy e represents a real variable and
we can analytically continue e to a complex energy z in
order to discuss a wave function of the edge state.

We get from Eq. (11)

p(z) = 2[&(z) —V'&(z)' —41 (12)

e~'1(z) = -P
q

~
M M p p l1)

where A(z) = TrM(z) and we impose an initial condition
= 1 which is compatible with the above require-

ments. Since the analytic structure of the wave func-
tion is determined by the function ~ = gA(z)~ —4, let
us discuss the Riemann surface of a hyperelliptic curve

A(z) —4. To make the analytic structure of
w = QA(z)2 —4 unique, we have to specify the branch
cuts which are given by A(z) —4 & 0 at Qz = 0. Since
this condition also gives the condition for ~p~

= 1, the
branch cuts are given by the q energy bands (see Fig. 1).
Therefore A(z) —4 can be factorized as
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~3
2

The winding number of the loop around the jth hole
I(C(p~)) is a well defined topological quantity. When
the Fermi energy of the two-dimensional system lies in
the jth energy gap, the Hall conductance is obtained by
this winding number as [6]

FIC. 1. Two sheets (Riemann spheres) with q = g+ 1 cuts
which correspond to the energy bands of the system.

to define the Riemann surface. (The Riemann spheres
are obtained by compactifying the ~z~ = oo points to one
point. ) Finally, the Riemann surface is obtained by glu-
ing the two Riemann spheres at these q branch cuts along
the arrows in Fig. 1. After the gluing operation, the sur-
face is topologically equivalent to the surface shown in
Fig. 2. The genus of the Riemann surface is g = q —1
which is the number of energy gaps. In this way, the
wave function is defined on the genus g (= q —1) Rie-
rnann surface. The branch of the function is specified as
QK(z)2 —4 & 0 (z —+ —oo on the real axis of R+). By
this construction, it becomes clear that the complex en-
ergy surface of the one-dimensional system Eq. (1) is a
genus g = q —1 Riemann surface Zg(k„) for each k„.

On the surface, the energy gaps correspond to circles
around the holes of the E~(k„)and the energy bands
correspond to closed paths on Zg(k&) (see Fig. 2). The
Bloch function is defined on this surface. 4q has always

~ (b)

g zero points at p~ [@~ (p~) = 0]. Since there are two(b)

real axes on the Z~, there are two p~'s on the surface.
However, only one of the two gives a zero of @q

(b)

Changing k& from 0 to 2x, we can consider a family of
Zz (k&). Zz (k&) can be modified by this change yet all the
Z~(k„)with different k„sare topologically equivalent if
there are stable energy gaps in the two-dimensional spec-
trum. By identifying the topologically equivalent Eg(k&),
we can observe that the p~ (k„)moves around the holes
and forms an oriented loop C(p~).

energy bands

C(V, )

FIG. 2. Riemann surface of the Bloch function under the
rational flux P = p/q. The number of the gaps, g, is the genus
of the Riemann surface. C(p~) is a loop formed by the trace
of the zero point of @~(z). The energy bands are also shown
by closed loops.

~,"= ) .~.' "= —1(—C(p~)) (14)
l=l

This is a second interpretation of the Hall conductance
as a topological number.

Further we can determine the behavior of the edge
state and the loop C(p~) by investigating Mii. When
~Mii(p~)

~

& 1, the edge state is localized at the left edge
and ifrq(p~) = 0 on R+ and when ~M»(p~)~ & 1, they
are localized at the right edge and ill~(p~) = 0 on R
Using this relation we can follow the movement of p,~ and
assign the Hall conductance from the numerical calcula-
tion. Here we show an example in Fig. 3. From the figure
and using Eq. (14), we can determine o».

Now we calculate the Hall conductance in Eq. (5)
by using the explicit wave function Eq. (13). When
we restrict the complex energy to the (real) energy
bands, we obtain the Bloch function for the jth band
W(e, k„)on the magnetic Brillouin zone. The energy e
lies on the q circles S, j = 1, . . . , q which are explic-
itly defined on Z&(k&) (see Fig. 2). These circles are
parametrized by k through p = e'q" . Using a relation

2i sin—(qk ) = v'A2 —4 and considering the branch con-
vention for v A2 —4, we can get an explicit parametriza-
tion of the circles S (kz). k„alsolies on the circle S (k„)
and the product Si(k ) x Si(k„)is the magnetic Bril-
louin zone for each energy band j. The Bloch function
@ (e, k&) is analytical in e and k„and e is analytical in k
and k&. Therefore W(k, k„)is also an analytical func-

tion of both k and k„and 4~& ——1. This Bloch function
satisfies the requirements discussed earlier to calculate
02 y.

Moreover one can see that the zeros of the Bloch func-
tion 4~q(k, k„)are given by the zeros of M2i since p is
always nonzero on the magnetic Brillouin zone and Mq2
is a polynomial in the energy variable. The zero of M2i(e)
is given by the energy of the edge state and always lies
in energy gaps or at band edges. Therefore the zeros of

(k, k„)are given by the points where the edge state(b)

is degenerate with the bulk state at the band edges (see
Fig. 3).

Near the degenerate point k = (k*, k„*),we expand the
4q up to linear order in 6k~ = k~ —k* and sky —ky ky
to calculate o». For example, consider the contribution
from the jth energy band (j: odd ) and focus on the
degenerate point at the band top A as shown in Fig. 4.
Near A, p~ moves from the upper Riemann surface R+
to the lower Riemann surface B . In the jth energy gap
for j: odd, one can show that Mii(p~(k„)) & 0 and k* =
7r/q [6]. Therefore we obtain —1 & Mii(pz(k&)) when
k„&k„*(on the solid line in the gap), Mii(p~(k„*))= —1
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