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Nonlogarithmic Repulsion of Transmission Eigenvalues in a Disordered Wire
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An exact solution is presented of the Fokker-Planck equation which governs the evolution of an
ensemble of disordered metal wires of increasing length, in a magnetic field. By a mapping onto a
free-fermion problem, the complete probability distribution function of the transmission eigenvalues
is obtained. The logarithmic eigenvalue repulsion of random-matrix theory is shown to break down
for transmission eigenvalues which are not close to unity.
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Level repulsion is the phenomenon that the eigenval-
ues of a large Hermitian matrix with randomly chosen
elements have a small probability for close separation.
The importance of this mathematical fact for the physi-
cal properties of a complex quantum mechanical system
was first noticed in 1955 by Landau and Srnorodinsky
[1]. In the absence of correlations among the matrix ele-
ments, the probability for close separation of two eigen-
values E and E' vanishes as [E' —E~/. (The number

P equals 1 in a zero magnetic field and 2 in a time-
reversal-symmetry breaking magnetic field, while P = 4
in zero Field with strong spin-orbit scattering [2].) Math-
ematically, level repulsion originates from the Jacobian
J = Q,&. [E~ —E, ~/ of the transformation from ma-
trix space to eigenvalue space. Wigner [3] introduced
the notion of level repulsion as a "force" by interpreting
the Jacobian as a Boltzmann weight, J = e ~, with
W = —P,& ln [Es —E, I This interpretation of the en-

ergy spectrum as a one-dimensional gas of logarithmically
repelling classical particles in equilibrium at temperature
P is the essence of the Wigner-Dyson random-matrix
theory.

The analog of level repulsion for transmission eigen-
values formed the basis of Imry's 1986 theory of uni-
versal conductance fluctuations (UCF) [4]. (The trans-
mission eigenvalues T„, n = 1, 2, . . . , N, are the eigen-
values of the matrix product tt~, with t the N x N
transmission matrix of the conductor and N the num-
ber of scattering channels at the Fermi level. ) By com-
puting the Jacobian from the space of scattering matri-
ces to the space of transmission eigenvalues, Muttalib,
Pichard, and Stone [5] formulated a random-matrix the-
ory (RMT) of quantum transport, along the lines of the
Wigner-Dyson B.MT of energy levels. This new Jacobian
J = g, & [As —A, [~ takes the same form as for energy
levels in terms of the ratio A„:—(1 —T„)/T„of refiec-
tion to transmission eigenvalues. By postulating that all
correlations among the transmission eigenvalues are due
to the Jacobian, one arrives at a probability distribution
P of the form P = JQ,. f(A, ) All rnicroscop. ic param-
eters (sample length L and width W, mean free path t)
are contained in the single function f(A) This strong.
assumption could be justified by a "maximum entropy

principle in the quasi-one-dimensional (quasi-1D) limit
L )) W of a wire which is much longer than wide [5—7].
As in the case of the energy levels, P can be written as
a Boltzmann weight,

P=e ~, W=) u(A, , A)+) V(A, ), (la)

u(A, , As) = —in[As —A, i,

with V = —P ln f playing the role of a confining po-
tential.

It was originally believed that the distribution func-
tion (1) was in exact agreement with the diagrammatic
perturbation theory of UCF [8], which for a quasi-1D
conductor yields a variance

Var G/Go ———is P (2)

l = —) A(1+A)J J 'P,OP 2 . 0 0
OI p . -OA,

where p = PN+ 2 —P. Equation (3) has to be solved
for the ballistic initial condition limL, e P = Q,. b'(A, ).
The complicated differential operator on the right-hand
side (rhs) of Eq. (3) is the Laplacian (Laplace-Beltrami

for the sample-dependent fluctuations of the conductance
G (in units of Ge = 2e /h). However, recently it was cal-
culated [9] that Eq. (1) yields a coefFicient s instead of is
in Eq. (2) independently of the form of V(A). The differ-
ence between 8 and z& is tiny, but it has the fundamental
implication that the interaction between the A's is not
precisely logarithmic, or in other words, that there exist
correlations between the transmission eigenvalues beyond
those induced by the Jacobian. What then is the correct
distribution function'? Is it still of the form (1) but with a
nonlogarithmic u(A, , As )? Or is there a many-body inter-
action u(Ai, A2, . . . , Aiv) which cannot be reduced to the
sum of pair interactions? That is the problem addressed
in this paper.

Our analysis is based on the Dorokhov-Mello-Pereyra-
Kumar equation [10] for the evolution of the eigenvalue
distribution function in the ensemble of disordered wires
of increasing length,
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operator) in the Riemannian space of transmission eigen-
values [11]. An essentially equivalent "supersymmetry
formulation" of the diffusion process described by Eq.
(3) has been given by Iida, Weidenmuller, and Zuk [12].
The significance of Eq. (3) is that it satisfies a central
limit theorem for multiplication of isotropic transfer ma-
trices [6,13]. The isotropy condition restricts its validity
to quasi-1D geometries L )) W. Mello and Stone [14]
have shown that for these geometries Eq. (3) yields re-
sults for the average conductance and its fluctuations in
precise agreement with diagrammatic perturbation the-
ory.

Because of the strong coupling between the N degrees
of freedom, it has so far only been possible to compute
from Eq. (3) the first two moments of the conductance
[14,15]. This is not suKcient to determine the form of the
eigenvalue interaction, which requires knowledge of the
complete distribution function. Previous work in this
direction was restricted to the case N = 1 of a single
degree of freedom [16]. Here we wish to announce that
we have succeeded in solving Eq. (3) exactly for P = 2
and arbitrary ¹

The solution proceeds in four steps. The first step is
to transform from the transmission eigenvalues T to a
new set of variables x, defined by

T„=1/cosh x„. (4)
The physical significance of the x variables is that L/x„
equals the channel-dependent localization length of the
conductor [6]. Since T„E [0, 1], x„e [0, oo). Substitut-
ing A„—:sinh x„, one finds from Eq. (3) that the prob-
ability distribution of the x variables satisfies a Fokker-
Planck equation with constant diffusion coefBcient,

i=i

fl = —) ln
l

sinh x~ —sinh x,
l

——) ln(sinh2x, ),
i(j 'C

where we have defined s —= L/t.
The second step is to map the Fokker-Planck equation

(5) onto a Schrodinger equation by means of the substi-
tution

P((x„},.) =.-'~"«*-»e((x„),.).
This is a variation on Sutherland's transformation [17],
which we used in Ref. [18] in a diferent context. Substi-
tution of Eq. (6) into Eq. (5) yields for @ a Schrodinger
equation in imaginary time,

N P P2
U = ———N(N —1)——N(N —1)(N —2)—. (9)

For a particular ordering of the x„'s, the function
40 oc exp( —2pA) is an eigenfunction of the N-fermion

Hamiltonian '8 with eigenvalue U [since e ~ is an s-
independent solution of Eq. (5)]. Antisymmetrization
yields the fermion eigenstate

Ge —y Pri(1*-1) (10)
x ' —x'

)

i(j
with C a normalization constant.

The third step is to relate the N-fermion Green's func-
tion G((x„j,s l (y„j) of the Schrodinger equation (7) to
the solution P((x„),s l (y )) of the Fokker-Planck equa-
tion (5) with symmetrized delta-function initial condition

N

P((x-) o
l (y )) =

N, ) . (11)
7r i=1

The sum in Eq. (11) is over all ¹!permutations of
1, 2, . . . , N. Eventually, we will take the limit (y„) —+ 0
of a ballistic initial condition, but to carry out this limit
correctly it helps to first consider the more general initial
condition (11). The functions P and G are related by a
similarity transformation,

b(x, —y,. ).

P((x-) sl(y H = +0((x-k)G((x ), sl(y ))+o'((y H

(12)
For p = 2 the interaction term in Eq. (8) vanishes identi-
cally, reducing 7f to a sum of single-particle Hamiltonians
+0~

1 02

4N Ox2

1

4N sinh 2x
(13)

Go(x, sly) = —k s 4Ne " '~' A(x)gi (y). (15)

It might be possible to solve also the interacting Schro-
dinger equation (7) for P = 1 or 4, by some modification
of techniques developed for the Sutherland Hamiltonian
[17,19], but here we will only consider the simplest case
P = 2 of broken time-reversal symmetry. The spectrum
of 'Ho is continuous, with eigenvalues e = kz/4N The.
(real and normalized) eigenfunctions are

QA, (x) = [irk tanh(zvrk) sinh(2x)] Pi (;& il (cosh 2x),

(14)
where P (x) is a Legendre function. The single-particle
Green's function Go(x, s

l y) is

= (H —U)4, The N-fermion Green's function G is a Slater determi-
nant of the Go's,

1+ . 2sinh 2xi
~Us

G((* ) sl(y )) =
N, D«Go(x, sly ) (16)

sinh 2xj+sinh 2xi 8
(cosh 2x~ —cosh 2x )2 ' where Det a„denotes the determinant of the N x N

matrix with elements a„
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The fourth step is to take the limit (y„) ~ 0 of a ballistic initial condition. The zeros of the Slater determinant
(16) for y~ —+ 0 cancel the poles of @o ((y„)) in Eq. (12), as one can see by expanding Go(z, s

I y) in powers of y.
We find

lim P((x„),s I (y„})= C(s) (sinh x, —sinh z, )
(y )~0

sinh 2x,

x Det dke " '~ tectt(sek)k P t, s t~(costt2e„)),
0

(17)

with C(s) an x-independent normalization constant (such that P is normalized to unity).
The solution (17) holds for any s and N. It can be simplified in the regime 1 « s « N of a conductor which

is long compared to the mean free path l but short compared to the localization length Nl. This is the metallic
regime [20]. The dominant contribution to the integral over k in Eq. (17) then comes from the range k & (N/s) i~

l. In this range tanh(~vrk) ~ 1 and the Legendre function simplifies to a Bessel function, Pk~, ), i!(cosh2z) k

(2x/ sinh 2x) i) 2 Jo(kx), provided x » (s/N)i~2. The k integration can now be carried out analytically,

dke " '~ k J()(kx„) = 2(m —1)!(4N/s) e *" ~'L i(x„N/s), (18)

where L„(z) is a I aguerre polynomial. We then apply
Ithe determinantal identity

DetL i(x„N/s) = cDetz„= c (x~ —x, ),
i&j

P(( k ) =&() (sinh x, —sinh x,)(x, —z, )

Ne-* ~~'(x, sinh2z, )'~'

with c an x-independent number [which can be absorbed
in C(s)]. Collecting results, we find that the general so-
lution (17) simplifies in the metallic regime to

We now transform back from the variables x„ to A„=
(1 —T„)/T~ —= sinh x~, and write Eq. (19) in the form

P((k„),s) = t (s) exp —P() e(k, , kt) + ) V(k, , s))
i&j i

u(A„A~) = —
2 ln IA~

—A, [
—

2 ln Iarcsinh A —arcsinh A,

V(A, s) = —arcsinh (A ~ ) (1 + O(N ) ),
N
2s

(20a)

(20b)

(20c)

with P = 2. Equation (20) is similar to Eq. (1), but
differs in the eigenvalue interaction u. For A « 1 (i.e. , for
T close to unity) u(A, , A~ ) —+ —ln

I A~
—A, I, so we derive

the logarithmic eigenvalue repulsion (1b) for the strongly
transmitting scattering channels. However, for A —1 the
interaction (20b) is nonlogarithmic. For fixed A, « 1,
u(A, , A~) as a function of Az crosses over from —ln

I A~
—A,

I

to —
2 ln IA~

—A,
I

at A~ = 1. This answers the question
raised in the introduction: The eigenvalue interaction
(20b) is still a two-body interaction, as in Eq. (1b), but
it is different for weakly and for strongly transmitting
scattering channels. For weakly transmitting channels it
is twice as small as predicted by considerations based
solely on the Jacobian, which turn out to apply only to
the strongly transmitting channels.

The reduced level repulsion for weakly transmitting
channels should yield an enhancement of the conductance
fluctuations. To check this, we have computed the two-
point correlation function

K(z x') = (~(x))(~(x')) —(C(z)~(z')) (»)
where p(x) = P, b(x —x, ) is the eigenvalue den-

K(z, z') = g(x —x') + g(x + x'),
1 kcoskxgx = —— dk

vr~ () 1+cotanh(2vrk)
1
, Re (x + i0+) ' —(x + i~) '] .

(22a)

(22b)

The variance of an observable A of the form A = Q,. a(x, )
(a so-called linear statistic) is obtained from

Var A = — dx dx' a(z) a(x') K(x, x').

Substituting Eq. (22) we find
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sity [21] and ( ) denotes an average with distribu-
tion (19). We compute K(z, x') according to the gen-
eral method of Ref. [9], by solving the integral equa-
tion —fo dz' Q(z')u(x, z') = P(x). The solution Q(x) =
fo dz' PK(z, x') P(x') then yields the function K(x, x') in

the large-N limit. (This limit corresponds to the regime
of validity of the diagrammatic perturbation theory of
UCF [8].) We find



VOLUME 71, NUMBER 22 PH YSICAL REVIEW LETTERS 29 NOVEMBER 1993

1
VarA =

27r2

k]a(k) [~
dk 11 + cotanh( 2 vr k)

(24)

a(k) = 2 dx a(x) cos kx.

To obtain the variance of the conductance G/Go
P,. T, we substitute a(x) = 1/cosh x, hence a(k)
7rk/sinh(2vrk), hence

Var G/Gp =
2

ks exp( —27rk)

sinh(2z. k)
(26)
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