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Rough Surface Retrieval from the Specular Intensity of Multiply Scattered Waves
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We present a solution to the direct determination of the statistical parameters (correlation length
and root mean square deviation), characterizing the profile of a random rough surface with large
slopes, thus producing multiple scattering, This is done from the specular, coherent, component
of the mean intensity of waves scattered from the surface, and, today, is the only reliable, realistic
procedure which uses an analytical expression of this component. The method is applicable whenever
this specular component may be measured, and is valid for a wide variety of physical problems
involving surface scattering.
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The diKculties involved in the determination of a po-
tential from scattering data are well known. Detectors
only provide intensities, namely, the square modulus of
the scattered amplitudes. Hence, the information on the
phase is lost. For single scattering, holographic methods
provide phase information and thus the potential or dif-
fusing object can be recovered, e.g. , from a set of Fourier
transformations. However, when multiple scattering is
prominent, no direct method exists in general, although
some tentatives have been proposed [1,2].

In this work we present a direct method for deter-
Inining the correlation length T and the rms o of ran-
dom rough surface profiles from measurements of only
the specular component (SC) of the mean scattered in-

tensity (MSI) of waves multiply scattered from the sur-
face. As far as we know, this is the first time that a
general direct inversion procedure is established for sur-
face topographies that produce multiple scattering. The
retrieval of these statistical parameters constitutes a gen-
eral physics problem, of relevance in such a diversity of
areas as, e.g. , surface physics, light scattering, integrated
optics, acoustics, radioastronomy, oceanography, remote
sensing, and particle physics [3—9]. The basis of the pro-
cedure is an analytical expression of the SC which we
have found to coincide with that given by Monte Carlo
(MC) numerical calculations in all tested cases; as a mat-
ter of fact, it presents an excellent matching with the MC
whenever the SC is larger than the background disuse
halo, namely, when the MSI has a measurable coherent
speculor component.

Let kp = (K, —qp) and kg = (K + Q, q) represent the
incident and scattered wave vectors, respectively, both
expressed in terms of the components parallel and normal
to the surface mean plane R, = (x, y), (K + qo

——K +
Q2 + q2). The surface profile being z = D(R).

.For a hard wall, or perfectly conducting surface, by
using a series expansion in kcr of the scattering equations

1 1gl"l (qe, T) = g(qp, T)—
(27r)2 qp

(I(Q = 0)) = exp[ —4qiicr g(qo, T)],

where

1 1
g(qo) T) =

(2 )2
dP dQ'Q'Rq'W(Q'). (2)

In Eq. (2) Rq' = (qo2 —Q'~ —2KQ' cos P) i/2 for
(qo2 —Q'2 —2KQ'cosP) ) 0 and it is zero for (qo—
Q'z —2KQ'cos p) ( 0; also, W(Q) denotes the power
spectrum of the surface, i.e. , the Fourier transform of the
profile correlation function.

For a surface with an isotropic Gaussian correlation
function c(r) = exp( —r /T ), at normal incidence the g
function of Eq. (2) reads

g(qo, T) = qT, F, 1, ——
,
—1 2 2 5 qOT

where qFq is Kummer's function.
For the case of a negative exponential correlation func-

tion, c(r) = exp( —r/T), at normal incidence, the g func-
tion reads

g(qo T) = qoT &+& 1 qoT4x ' 2' 2' ) ' (4)

where 2E& is the hypergeometric function.
If the incident field is light or other electromagnetic

wave, one should use instead of Eq. (2) the corresponding
equation for vector waves. For instance, in the case of ss
scattering, the g function reads [14]

dP cos P dQ'Q' R(1/q') W(Q').

used for periodic surfaces [10] an expression of the SC
from a random surface was obtained [11,12] up to second
order. By performing a phase expansion of the scattered
field it was proven [13] that the second order term of
Refs. [11] and [12] is just the exponent of the SC in a
fastly convergent expression which is like a Debye-Wailer
factor. The expression for this intensity is
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The erst term in Eq. (5) coincides with the g function
of Eq. (2). R(l/q') = 1/(qp2 —Q'z —2KQ'cosP) ~2 for

(qp
—Q' —2KQ'cos P) ) 0 and it is zero for (qp2 —Q'

2KQ' cos P) & 0.
The crucial fact in Eqs. (1)—(5) is that g does not de-

pend on o., but only on both T and the angle of incidence
ep = cos (qp/kp), (kp = 2vr/A). Thus, o2 constitutes
only a scaling factor for (I(q = 0)).

Although Eqs. (1)—(5) should be a very good approx-
imation to the SC of the MSI, they cannot be checked
against exact numerical MC calculations since these do
not exist at present due to large computer memory and
time needed. However, this difBculty is overtaken if the
surface is one dimensional (i.e. , constant in, e.g. , the y
direction), z = D(x), for which numerical MC calcula-
tions are possible at present [15—18]. Then Eq. (2), for
either scalar waves or s-polarized electromagnetic waves,
becomes
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g(qp, T) =

2' go
dQ'Rq'W(Q') . (6) . 6

2T2
(7)

In Eq. (6) Rq' = (qp —Q'z —2KQ')~~2 for (qp2 —Q'2—
2KQ') ) 0 and it is zero for (qp2 —Q'2 —2KQ') & 0.

For a Gaussian correlation function, at normal inci-
dence, Eq. (6) reads

0.2'

0 I
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In order to assess the validity of our equations, we com-
pare the SC obtained from them with that given by
the MC computations available in 1D random surfaces.
These calculations can be performed for a large range of
statistical parameters T and o. We shall show compar-
isons for the case of a Gaussian correlation function with
T between 0.1A and T = A, and o/T up to one. Figures
1(a) and l(b) show the SC calculated by inserting Eq.
(6) into Eq. (1). The MC values fall on top of the curves
corresponding to the analytical results, Eqs. (1) and (6),
except for small departures at angles of incidence larger
than 60 . This is due to the lack of convergence of the MC
calculations at large angles of incidence, shown by errors
larger than 2% in their unitarity condition [16]. Since
Eq. (1) works better the larger the angle of incidence
[19] (see also [11,12]), these analytical results should cor-
rect the MC computations at such large values of 6IO. For
T & 0.1A the MC is very sensitive to the surface sam-
pling at cr/T near one, although the agreement between
both calculations is better than 5% (this is not shown
here for brevity). We should say that in all cases that we
tested in which the SC is larger than the background, the
analytical and the MC computations have been found to
agree with each other. These cover all cases where mea-
surements of the SC of the MSI are possible.

We have also compared with the Kirchhoff approxima-
tion (KA), obtained when T —+ oo (g then tends to one),
and the errors for T = A and o & 0.1 are of the order of,

FIG. 1. (a) Plots of (I(Q = 0)) obtained from Eqs. (6) and
(7) (full lines) and from the Monte Carlo calculations (dots).
From top to bottom: T = 0.2A, o. = 0.05A, 0.1A, 0.15A, and
0.2A. (b) Same as (a) for T = A.

or larger than, 10%. Of course, for smaller values of T
comparisons with the KA are meaningless.

Thus, the inversion method works for all surfaces with
slope o /T & 1 providing they yield a measurable specular
component of the MSI, namely, when both o. and T are
considerably smaller than the wavelength. Notice that
then large roughness (i.e. , large slopes) are included. Al-
though we believe that this range of validity holds both
for 2D and 1D surfaces, the availability of present day
MC calculations for 1D surfaces only, restrict our test
of these equations to these 1D surfaces. Conversely, the
method should fail when the surface produces an inco-
herent background of the MSI which is large enough to
swamp the SC and thus this SC cannot be measured,
this occurs when both o. and T are comparable, or larger
than, the wavelength; note, however, that in this case the
calculation of the SC is meaningless.

Inversion method for the statistical parameters cr and
T.—Having proven that the analytical expression pre-
sented above gives the same result as the full MC com-
putations in all cases where the MC is reliable, we can
solve the inverse statistical problem for the random sur-
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FIG. 2. (a) Plots ofln(I(Q = 0))/4koo versus Ho, obtained
from Eqs. (6) and (7), for several values of T. Gaussian cor-
relation function. The upper curve corresponds to T = 0.1A.
The successive curves downwards are for T increasing at steps
of 0.1A. The Kirchhoff limit is represented by the broken line.
(b) Same as (a) for a negative exponential correlation func-
tion.

tively. As seen, as T increases, these sections tend to
gather as they approach the limit of the KA (g = 1)
(see also Refs. [11] and [12]). Also, there are significant
differences between the results according to the shape
of correlation function. These differences should be well
distinguished with experimental measurements. Observe
that the deviations of the KA with respect to these curves
are larger for the case of the negative exponential corre-
lation. Notice that this method determines both cr and
T from the SC, while the KA [20], when it works, only
permits the determination of o. from the SC.

Finally, we should mention that for dielectric rough in-
terfaces we have no exact equation for the SC in this
case as Eqs. (1)—(7). However, we propose an approxi-
mate solution by multiplying the SC of Eq. (1) by the
corresponding reflectivity of a flat interface. We have
made comparisons with MC numerical simulations and
we have obtained that for T & A and o/T & 0.2 there
is agreement; but for T = 0.2A and o/T ) 0.5 there are
departures of 20% between our proposed formula and the
MC results.

In conclusion, we have presented an inversion method
that directly retrieves the statistical parameters of ran-
dom rough surfaces even with large slopes, thus giving
rise to multiple scattering. We have compared with MC
simulations for Gaussian correlation functions, available
for 1D surfaces, obtaining excellent agreement in all prac-
tical cases submitted to test. The procedure is equally
applicable to any other correlation function and does not
require us to measure the diffuse background and should
be useful to experimentalists.

It is a pleasure to thank M. Franco and J.A. Sanchez-
Gil for helping us in the computations. The MC simula-
tions were done by J.A. Sanchez-Gil. This research has
been supported by grants from the CICYT and the EC.

face; namely, determine the values of T and o. if the SC
is known at several angles of incidence. Note that we do
not need to use information on the background diffuse
MSI. This inversion procedure is based on the remark-
able fact of Eq. (2) that g does not depend on o. This
permits the direct determination of the surface statisti-
cal parameters in the following manner: (1) Draw the
surface: —g(Ho, T) cos Hp versus Ho and T, with g given
either by Eq. (2) or Eq. (3) according to whether the
problem is scalar or vector. (2) Measure the specular
component of the MSI for several angles of incidence 90
and plot: In(I(Q = 0)). Scale this curve and move it
along the T axis of the surface drawn in step (1) until, at
a certain value of T, it coincides with one of the sections
of this surface. This matching determines T. Then, o is
obtained by equating this scale factor to 1/(4ko~cr2).

Figures 2(a) and 2(b) show the sections ln(I(Q
0))/4koo. versus Ho at several values of T (inversion aba-
cus curves), for a surface with correlation function being
either a Gaussian and a negative exponential, respec-
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