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Bose-Fermi Transformation in Three-Dimensional Space
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A generalization of the Jordan-Wigner transformation to three (or higher) dimensions is con-
structed. The nonlocal mapping of spin to fermionic variables is expressed as a gauge transformation
with topological charge equal to 1. The resulting fermionic theory is minimally coupled to a non-
Abelian gauge field in a spontaneously broken phase containing monopoles.
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The Jordan-Wigner (JW) transformation [1] for one-
dimensional spin systems has provided remarkable appli-
cations in condensed matter physics, including the two-
dimensional classical Ising model [2,3] and the XY' spin-
1/2 model [4]. The counterpart in relativistic field theory,
the bosonization of fermionic theories in 1+1 dimensions

[5], has also opened an important field of active research.
Bosonization in higher dimensions has been elusive for

a long time. Relatively recent work has uncovered a Bose-
Fermi transmutation in 2+1 dimensions which is experi-
enced by the elementary excitations of the sigma model
in the presence of a Chem-Simons field [6,7]. This result
paved the way for the construction of the JW transfor-
mation in a lattice of two spatial dimensions, where a lo-
cal fermion theory is mapped onto a system of hard-core
bosons described by the Heisenberg Hamiltonian [8]. On
the same basis, the bosonization scheme has been also
implemented for 2+1 relativistic field theory [9].

In this Letter, we propose an extension of the 3W
transformation to three or more —dimensions. Here we
discuss in detail the three-dimensional case. The gener-
alization to higher dimensions is straightforward.

The JW transformation relates the local spin-1/2 op-
erators, S',S+ ([S',S+] = +S+ [S+ S ]

= 2S ), to
local fermionic operators, g, Qt ((g, Qt) = 1, (g, g} =
(qt, qt) = 0)

S+(x) = g (x) U(x), S (x) = Ut (x)Q(x), (1)

The 3D JW transformation has the same form as (1),
but now it connects an SU(2) doublet of spins S to an
SU(2) doublet of fermion operators g

S+( ) ~t ( )
i Q jp (z)cu (z —x;np)

(4)

where jo (z):—gt(z)r Q(z) is an SU(2) "isospin" den-
sity operator ([7,7 ] = ie 'w', sum over repeated in-
dices is implied), and

w (x; iio) = arg(x; no) e (x; no),

with e (x; no) being a unit vector orthogonal to x and
no. The application x —+ io (x;no) generalizes the 2D
and 1D expressions, as can be seen by restricting it to a
plane and to a line, respectively.

The mapping is completed by exhausting the commu-
tator algebra of S+ and S . In particular, the general-
ization of S', S'&(x)—:(1/2) [S+(x),S& (x)], is

S'p ——-[1 —p(x)]b p
—-jo (x)~ p, (6)

@t ( ) S+( )
—i Q S* (z)~ (z—x;np)

where p(x) = Qt (x)Q (x) is the fermion density. It is
readily seen that the diagonal part, S', has the usual
form, 1/2 —/tan (no sum over cr). The inverse of (4)
reads

where U(x) is a nonlocal function of g.
In a one-dimensional lattice (1D), the operator U takes

the form

UiD(x) = e
g'(z) 61 (z—x)

(2)

i Q j (z)arg(z —x;np)
U2D (X) = C

where the function arg(x) is the angle between x and an
arbitrarily given space direction no.

where j (z) = gt(z)g(z) is the fermion number density
operator, and 8(z) is the 1D step function. The corre-
sponding expression in 2D is [8,10]

with S' = —S'&~& .
The key feature of the ansatz (4) and (5), which is

responsible for the transmutation of statistics, is the fact
that

(y —x; no) —a (x —y; rio) = z e (x —y; no) . (8)

This gives rise to a (—1) factor when the positions of
two spins are exchanged, leading to opposite statistics
for the S and g operators. In contrast with the 2D case,
there are no intermediate possibilities between Bose and
Fermi statistics because the structure constants of the
group completely fix the normalization of the generators.
For x g y, and using that (Q (x), @&(y)j = 6 p6(x, y),
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(4-(x) op(y)k = (~.'(x) 4p(y)) = 0, [j'(x) @ (y)1 = ~:pep(x)~(x y) lj"(x) @.'(y)] = ~p.~p(x)~(xy) one
finds

& (x)~+(y)[e" '" "'"']
p

—~p(y)~, ( )[e" " ' "'"']
= y (x)q'(y)U'(x)U(y) e'—(y)e, ( )["""'""'"'e '""'" '"']-. (y)U'(") (9)

By virtue of (8), the exponential on the right hand side
(RHS) of (9) is —6~~. On the other hand, one may choose
the reference vector no = (y —x)/~y —x[, making the ex-
ponentials on the LHS of (9) equal to the identity. We
assume the Hamiltonian under consideration to be invari-
ant under global SU(2) rotations. Since v p is invariant
under a combination of a rotation in the "space" index
a and of the isospin indices (nP), a rotation of no can
always be compensated with a global SU(2) transforma-
tion. Also, Ut(x) and U(y) commute because the vectors
z —y, z —w, and no, for a generic point z, lie on the same
plane. Hence, for diferent sites x and y,

[~.( ), ~,'(y)] = (0-( ) 0'( ))U'( )U( ) = o (1o)

The rest of the x P y commutators can be shown to
vanish along similar lines. On the other hand, the equal-
site commutators define the algebra of the spin operators,
which is a generalized spin-1/2 algebraic structure [11].

The essential feature of the mapping, responsible for
the statistical transmutation, is its topological structure.
The operators U in (2) and (3) produce local phase trans-
formations for the field g(x), generated by the charge
density j . The U's rotate the phase of Q in a prescribed
manner at each site, throughout the entire lattice. In 1D,
the resulting configuration is a kink centered at ~, where
the Q fields on the left of x are flipped with respect to
those on the right. The 2D operator, on the other hand,
produces a vortex centered at x.

These local assignments are operations generated by

j in the corresponding internal symmetry groups of the
fermions [Z2 and U(1), respectively]. Although these are
gauge transformations, they cannot be continuously de-
formed to the identity due to their nontrivial homotopical
character. The JW transformation belongs to the homo-

topy class of winding number one of the gauge group
[12,13].

Indeed, the JW transformation establishes a one-to-
one correspondence between the points of the boundary
of the lattice (spatial infinity) and the elements of a group
manifold. In 1D, the boundary f—oo, +oo) is mapped
onto Z2, for 2D, the circle at infinity, S~, is mapped
onto U(1). The existence of these mappings not continu-
ously connected to the identity is guaranteed because the
zeroth and first homotopy groups of Z2 and U(1) [pro(Z2)
and vri(U(1)), respectively] are nontrivial.

The generalization of this construction to 3D, then,
calls for a mapping between the boundary of three-
dimensional spac" the sphere at infinity S2 —and a
group manifold M with a nontrivial second homotopy

group, [vr2(M) g 0]. The simplest choice is M = S
SU(2)/U(1) = SO(3)/SO(2), and one is naturally led to
consider the SU(2) or SO(3) gauge symmetry groups, in
a spontaneously broken phase. Unlike the 1D and 2D
cases, in 3D one is forced to consider a manifold that is
not a Lie group. This is so because xz(G) = 0 for any
Lie group (see, e.g. , [13]). For higher dimensions, the re-
quirement is jr~ i(M) g 0, and M = SO(D)/SO(D —1),
leads one to look for spontaneously broken SO(D) gauge
symmetry.

In sum, U(x) in the ansatz (4) and (5) is a gauge
transformation in the homotopy class of winding number
one that, acting on a uniform configuration, produces a
"hedgehog" arrangement centered at x.

The 3D Jordan-Wigner transformation provides a
fermionic representation for SU(2)-invariant spin sys-
tems. The spin operators 8 and 8+ transform as
S —+ T pSp, 8+ —+ T"p Sp+, TcSU(2). The sim-
plest SU(2)-invariant Hamiltonian corresponds to the
XY' model,

U(x)Ut(x+jc) = e'~*& '
i Q . j (z—)~ (z —x—ii)xgx+ p

i P j (z) W„(z—x) (12)

This defines the gauge potential W„(z), which can be
computed in the continuum,

z —x
W (z —x) = -e~

z x2 (z g x) . (13)

We identify W~ as the potential of a monopole [14].
Thus, the XY Hamiltonian is mapped to a fermionic
model, minimally coupled to an SU(2) non-Abelian gauge
field:

H = J) @t(x)e'~ (")Q(x+jc)+ HG,
X)P

where Q(x) = (Qi(x), Qz(x)), and the SU(2) gauge field
takes the form

A„(x) = ) j (z)W„(z —x) .
ZQX

(15)

H = J) [S+(x)S (x+ p, ) + S (x)S+(x+ jc)]
X)P

(j, runs over the unit cell vectors). Applying the mapping
(4) and (5) one finds that the product U(x)Ut(x+ p, )
becomes the link gauge field in the fermion hopping:
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In (14), HG represents the Harniltonian for the gauge
field degrees of freedom. Its exact expression is not im-
portant to us here, so long as it contains SU(2)~U(l)
symmetry —breaking interactions responsible for the pres-
ence of monopoles. The form of HG depends on the
model under consideration and on the physical signifi-
cance one assigns to the gauge field [15].

One may view the non-Abelian gauge field A„as a
nondynamical artifact needed for the construction of the
3W mapping. This point of view, however, would not
lead to a local interaction between fermions (A~ would
be just a new name for a nonlocal object). Alternatively,
one may regard the A& as a dynamical field whose clas-
sical equations possess a solution given by (15). This
approach urges us to consider the SU(2) gauge symme-
try as a true invariance of the physical system. In fact,
the SU(2) gauge symmetry is not foreign to a spin system
on the lattice. Any system of localized spins has a gauge
symmetry which reflects the local freedom in the choice
of the spin quantization axis. This phenomenon has been
recently shown to give rise to a stability enhancement of
the AF ordering in the Hubbard model. Also A„ is iden-
tified, in that model, as the field of magnonic excitations
[16].

An additional term that could be included in the
Hamiltonian is the analog of the Ising interaction,
S'&(x)S$ (x + p). This would generate a quartic
nearest-neighbor interaction for the fermions,

—[1 —~(x)l[1 —~(x+ ~)]+ -j"(x)j"(x+ ~)2 2

This includes, apart from the usual Ising form [the p(x)
x p(x+ p, ) term], an additional (iso)spin current density
interaction, jo (x)jo (x+jc). This issue will be discussed
elsewhere.

Although our work deals strictly with spin systems in
the lattice, it seems likely that the construction can be
extended to the context of a 3+1 relativistic field the-
ory. The operator U in that case may be related to
the monopole creation operators studied by Marino and
Stephany-Ruiz [17].

In the continuum, the statistical transmutation in the
presence of monopoles is not new. Jackiw and Rebbi, and
Hasenfratz and 't Hooft [18] have shown that in an SU(2)
gauge theory isospin degrees of freedom can be converted
into spin degrees of freedom in the field of a magnetic
monopole. On the other hand, Goldhaber [19] has shown
that if the system has odd-half integer isospin, a change
in statistics is induced. This seems to be the reason be-
hind the conspicuous presence of topological structures
in the 37 transformations.
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Note added. —It has been suggested to us that
an analogous construction could be devised in which
Skyrmions —rather than monopoles —induce the trans-
mutation of statistics.
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