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Fault Self-Organization as Optimal Random Paths Selected by Critical Spatiotemporal
Dynamics of Earthquakes
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We study a simple 2D dynamical model of a tectonic plate with long-range elastic forces and
quenched disorder. The interplay between long-range elasticity, threshold dynamics, and the quenched
featureless small-scale heterogeneity allows us to capture both the spontaneous formation of fractal fault
structures by repeated earthquakes and a short-time spatiotemporal chaotic dynamics of earthquakes,
well described by a Gutenberg-Richter power law. Faults are mapped onto a minimal interface problem,
which in 2D corresponds to the random directed polymer problem and are thus self-affine with a rough-
ness exponent —, .2

PACS numbers: 91.30.Dk, 05.40.+j, 64.60.Ht, 91.45.—c

Geological deformation and faulting are the long-term
cumulative traces of short-term processes such as earth-
quakes [1-4]. Earthquakes occur on faulted zones which
are in turn progressively organized by the accumulation
of rupture events. The mechanism behind this self-
organization and the precise relationship between these
largely diA'erent time scales are still lacking (see, howev-

er, [5]). An understanding of this problem is essential
both for a better characterization of geological structures
and for earthquake prediction purposes. An important
open question is whether the spatial and temporal com-
plexity of earthquakes and fault structures emerge from
geometrical and material built-in heterogeneities [6] or
from the chaotic behavior [7,8] inherent to the nonlinear
equations governing the dynamics of these phenomena.

Here, we address this question through a detailed
analysis of a simple 2D dynamical model of a tectonic
plate with long-range elastic forces. Except for the cru-
cial introduction of quenched disorder, our model is simi-
lar to that of Ref. [9] and is a direct extension of Ref.
[10] obtained by introducing "healing" after each rupture
or slip event. In the present version [11],it simulates an-
tiplane scalar shear deformation along the axis Oz of a
thin tectonic plate placed in the x-y plane. The plate is
discretized in a network of L by L elements or plaquettes
oriented at 45 with respect to the edges. The 2D lattice
represents a thin 2D tectonic plate at scales larger than
its thickness. A constant slow antiplane velocity along Oz

is applied at the boundaries to simulate the effect of
neighboring plates. Periodic boundary conditions are ap-
plied along the two edges parallel to Oy. Each element is
characterized by an elastic constant g. The elasticity
equations given in detail in Ref. [10] determine the strain
and stress on each element of the network and are solved
using a gradient conjugate method with error criterion
10 . As the applied deformation increases, a rupture
occurs in an element i when its stress cr; reaches a critical
value a, The novel rule that we add to describe earth-
quakelike events is to associate to each rupture an irrever-
sible incremental deformation w, =Pm, in the broken pla-

quette, where w, =o,/g is the elastic deformation of the
plaquette just prior to the rupture and 0~ p ~ 2 is a pa-
rameter of the model. This irreversible deformation rep-
resents the slip associated with an earthquake. Imposing
the slip w, corresponds to adding a permanent force di-
pole of magnitude f=gw, which opposes the stress. As a
consequence, the elastic stress in the element is instan-
taneously relaxed to a value equal to o, (1 —P/2) in an
infinite system, and close to this value up to finite size
corrections in a finite system. The stress distribution
throughout the lattice is then adjusted instantaneously
after each rupture according to the equations of equilibri-
um elasticity, and at the positions of increased stress, fur-
ther rupture can occur leading to a chain reaction, a mod-
el earthquake. In the present "dislocation" model, we do
not describe the details of the dynamical process of rup-
ture: This corresponds to treating the velocity of sound
as infinitely large, or better, to considering time scales
larger than the few seconds to minutes that an earth-
quake lasts, such that the stress has had time to equili-
brate everywhere.

After rupture, the element which has broken suAers no
change in its material properties and it can support stress
again in the future. This is the key difference with previ-
ous models [9,12] which assigned a new random stress
threshold after each rupture event ("annealed" disorder).
The physics underlying our assumption is that the slip as-
sociated with an individual earthquake is too small (a few
meters for a fault of a few hundred kilometers) to induce
a significant change of the mechanical properties of the
gouge and barriers which control the stick-slip behavior
of the element. Finally, the stress thresholds o, for each
element are drawn once for all from a probability distri-
bution P (a) chosen uniform in the interval [1 —Acr/2,
I+ho/2] with the value of ha between 0. 1 and 1.99 in
the simulations that have been carried out. To summa-
rize, our deterministic model belongs to the class of
"sandpile" models [13] for self-organized criticality,
characterized by slow driving and threshold dynamics,
with, however, two additional ingredients, namely,
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bered "1"in black is the one which has the smallest "en-
ergy" among all other paths. A striking first observation
is the one to one correspondence between the most active
fault seen in Fig. 1(b) and the best optimal path "1"
drawn in Fig. 2, as can be seen by superposing the two
figures. We have observed that this correspondence holds
true for all realizations that have been explored as long as
the degree P of stress release is smaller than the strength
of disorder Acr. For larger P, fault structures may be
more complicated than a single path. We also note that
the most active secondary faults found for larger values
of P (see below) are coincident in part or as a whole with
secondary optimal paths shown in Fig. 2.

In order to rationalize this remarkable correspondence,
consider the limit of relatively large disorder ha and
small degree P of stress release. Consider an element
which ends up belonging to an active fault. When the
tectonic velocity is switched on at t =0, its stress begins
to increase steadily until it reaches its threshold. After-
wards, being continuously driven to its stress threshold of
instability, it will undergo oscillations of relaxation of
small stress amplitude Po, . In the limit of small P, the
stress-strain characteristic of the element approaches a
horizontal line as P 0. The element behavior is thus
close to being perfectly elastic plastic. This reasoning al-
lows us to map the determination of the fault geometry in
the limit P 0 to that of the set of connected elements
just reaching their plastic thresholds, corresponding to
the global network elastic-plastic yield point. When such
a set appears in the network, the stress cannot increase
further by definition. This maximum stress must be
equal to the sum of the threshold values of each bond
along the path. The path which first reaches the plastic
regime for all bonds along its length is the one which
minimizes the sum of stress thresholds along it [16]
Q.E.D. It is important to underline that fault localization
is deeply related to the existence of two fundamental
features of the model, namely, long-range elastic forces
and quenched disorder. I n particular, the long-range
elastic forces are responsible for screening by active faults
which thus provide a positive feedback on the faults
themselves.

Let us summarize briefly the difTerent regimes found in

various systems, with diAerent sizes from 4x4 up to
90x90, with diA'erent parameters 0(P(2 and 0.01
~ h, o ~ 1.9. A systematic exploration shows that as long
as P & ha (the genuine geophysical situation), the defor-
mation and rupture events are localized on optimal paths,
possibly competing at long time scales. For P &Acr/10
typically, the localization is extremely strong and the op-
timal path or fault dominates and takes up all the defor-
mation. For larger values of P but still smaller than Acr,
we observe a localization of the deformation on a few op-
timal paths which compete in time, the fraction of slip
occurring of one fault being comparable to that occurring
on the competing fault. These results are, however,
strongly dependent on the specific disorder configuration
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and large fluctuations from sample to sample are ob-
served, which are typical of the hierarchical structure of
optimal paths in random media, as seen, for instance, in

Fig. 2. For P & Aa', we observe another regime where the
rupture events and the deformation become delocalized
over wide set of bonds.

Another clear feature coming out of the simulations is
the fact that the parameter P is similar to a temperature,
in the sense that the larger P is the larger the fluctuations
of the various variables of the problems, such as the elas-
tic stress and strain fields. A precise quantification of
these fluctuations is provided by the total elastic energy
stored in the whole system. As a function of time, it ex-
hibits small fluctuations for small P going to zero as
P 0 and larger and larger fluctuations as P increases.
This is compatible with the idea that P controls the de-
gree of chaoticity of the model (the Lyapunov exponent
increases with P) and can thus be viewed as a kind of
eflective temperature. The transition to a delocalized re-
gime for P & Acr is also another good indication of this
idea. For P &Ao but not small, localization occurs not
on a single fault but on an ensemble of competing paths,
which are in general separated by distances of the order
of the system size. This can already be seen in Fig. 1(b):
In this system realization, in addition to the well-defined
fault at the bottom, a more complex fault structure has
formed at the top. One fault system is typically active for
very long periods of time (much larger than the longest
time scale —V introduced by the tectonic velocity V)
until the locus of ruptures spontaneously switches to a
difl'erent fault(s) and the previously active fault may be-
come completely silent for a long time. In some cases,
the switch to another structure is brief. This feature of
alternate fault activity over long periods of time has been
described in several geological contexts and its origin is
still a mystery. Here, these observations find a natural
explanation within the analogy developed above with ran-
dom directed polymers and viewing P as an eflective tem-
perature. Qualitatively, when several faults have almost
the same "energy" and are thus almost equally optimal,
we can understand qualitatively the competition between
them as resulting from a slow exploration of these "ener-
gy" minima in the presence of a nonzero "temperature"
P. Here, we dwell on the analogy with the random direc-
tor polymer problem and note that the underlying chaotic
"earthquake" dynamics [17] is similar to the thermal ac-
tivation of the motion of a polymer due to the coupling to
a thermal bath at a nonzero temperature T. If T=O,
we recover the unique optimal path configuration. If T
& 0, the polymer explores slowly a number of other

configurations with a probability governed by the
Boltzmann factor e ' 8 . The long time scale of the
switch of activity between distinct fault systems reflects
the hierarchical [14] or ultrametric [18] structure of the
"energy" landscape of the set of paths.

The present plate tectonic model provides a physical
mechanism to explain the spontaneous formation of self-
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affine faults. It can be shown exactly [19], using a map-
ping onto the randomly stirred hydrodynamic Burger's
equation, that random directed polymers are self-aSne
with a roughness exponent (= —, ; i.e., the average width

h of the transverse Auctuations of an optimal path of hor-
izontal length L scales as h —L». We have checked that
the dynamically selected fault in the limit of small P is

indeed self-affine with the exponent —, in two ways: (i)
using the one to one correspondence between each bond
of the optimal path and each corresponding bond in the
dynamically selected fault and (ii) calculating directly
the rms amplitude h of the transverse wandering of a
fault as a function of its length L. This result can explain
the formation of relatively well-defined faults which tend
to grow and organize, not as straight objects, but more
often as self-aftine structures composed of many strands
of varying lengths, leading to the geological concepts of
fault segments and barriers. Furthermore, when the
stress release parameter P is larger, faults come in groups
and form a mulifractal structure, the geometry being the
set of elements persistently breaking, the measure being
the cumulative slip on each element. A thorough study of
the multiscaling properties of these structures will be re-
ported elsewhere but we note here that the complex fault
structures which are dynamically selected bear resem-
blance to fractal fault patterns observed in nature [6,20]
and in analog laboratory experiments [21,22].

We now turn to a brief description of the short-time
dynamics on these fault structures. The model earth-
quakes are separated by wildy varying periods of time
when few or no ruptures occur. We measure the elastic
energy stored in the system just before and after an
"earthquake, " and assign the diAerence as being the en-

ergy release induced by the earthquake. These energy
releases are found to follow a power-law distribution
similar to the Gutenberg-Richter law over more than two
decades, where the number N(E) of earthquakes of ener-

gy E scales as

N(E) —E '+ with B =0.31+ 0.04. (2)

We find that the exponent 8 is not sensitive to the value
of the disorder parameter h, cr and to the value of the de-
gree P of stress release. A similar value B= 0.3 has been
found in two different models, one [9] with "annealed"
noise instead of quenched disorder and the other [12] us-

ing a tensorial elasticity with "annealed" noise. This sug-
gests the existence of a kind of universality such that the
critical exponent 8 seems insensitive to the nature of the
disorder ("quenched" or "annealed" ) and to the scalar or
tensorial nature of the field.

In summary, our result suggests the novel concept that
individual faults are optimal interface structures, which
entails their self-a5ne scaling and the multfractal struc-
ture of fault networks [3,4,20,21]. Finally, we note that
the present model can also be used to describe the slow
deformation and organization of slips stemming from mi-
croplasticity in polycrystals.
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