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E]ectron-phonon interactions and Excitonic Dephasing in Semiconductor Nanocrystals
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The size dependence of the contribution to the excitonic dephasing rate in semiconductor nanocrystals
is clarified for various electron-phonon coupling mechanisms. On the basis of these dependencies, the
commonly observed linearly temperature-dependent term of the excitonic dephasing rate and the propor-
tionality of its magnitude to the inverse square of the nanocrystal size are attributed to pure dephasing
due to deformation-potential coupling. The calculated coeScients of the linearly temperature-dependent
term are quantitatively in good agreement with the experimental results on CdSe and CuC1 nanocrys-
tals.

PACS numbers: 78.66.Li, 71.35.+z, 73.20.Dx

Semiconductor nanocrystals of a size comparable to or
smaller than the exciton Bohr radius in bulk material are
attracting much attention from the fundamental physics
viewpoint and from the interest in the application to func-
tional devices. Especially their novel optical properties
due to the discrete electronic energy levels have been in-
vestigated extensively [1,2]. In semiconductor nanocrys-
tals, not only the electronic energy levels but also the lat-
tice vibrational modes become discrete due to the three-
dimensional confinement. The consequences of the latter
feature, namely, the phonon confinement, are now being
studied extensively. The longitudinal optical (LO) pho-
nons in semiconductor nanocrystals were observed by the
resonance Raman scattering [3-5] and the size depen-
dence of the electron-LO-phonon coupling strength was
discussed [4]. Also the size-quantized acoustic phonon
modes were observed by the low-frequency Raman scat-
tering [6].

Recently, in addition to these studies, the excitonic de-
phasing in various semiconductor nanocrystals has been
measured as a function of nanocrystal size and tempera-
ture. In CuC1 nanocrystals, the homogeneous linewidth
of the excitonic transition was measured from the
luminescence linewidth under size-selective excitation [7]
and by spectral hole burning [8]. In nanocrystals of II-
VI compounds, the excitonic dephasing constant was
measured by spectral hole burning [9-12] and by four-
wave mixing [13,14]. The commonly observed T (tem--
perature-) linear behavior of the excitonic dephasing rate
suggests the importance of the electron-phonon interac-
tion with acoustic phonon modes, although the relevant
temperature range is dependent on the nanocrystal size
and the material. In the higher temperature region, the
temperature dependence of the excitonic dephasing rate
deviates from the T-linear behavior, indicating the parti-
cipation of LO phonons.

In this Letter, we derive electron-phonon interactions
with acoustic phonons in semiconductor nanocrystals and
clarify the size dependence of the contribution to the ex-
citonic dephasing rate for various electron-phonon cou-
pling mechanisms, i.e., the deformation-potential cou-

pling and the piezoelectric coupling. On the basis of
these results, we identify the origin of the commonly ob-
served T-linear term of the excitonic dephasing rate and
of the proportionality of its magnitude to the inverse
square of the nanocrystal size.

In order to derive the electron-phonon interaction, we
must first specify the acoustic phonon modes in semicon-
ductor nanocrystals. As long as the nanocrystal size is
not too small, its acoustic properties can be described in
terms of the elastic vibration of a homogeneous particle.
In the following, the shape of a nanocrystal is assumed to
be spherical and the anisotropy of the elastic constants is
neglected for simplicity of the arguments. Then the vi-
brations of an elastically isotropic sphere can be de-
scribed by

8
p u =(A, +p)grad divu+pV2u,

2

where u is the lattice displacement vector, p is the mass
density, and X and p are the Lame's constants [15]. The
eigenmodes of the above equation under the stress-free
boundary condition were studied by Lamb for the first
time [16]. There are two kinds of eigenmodes, namely,
torsional modes and spheroidal modes. The former
modes are purely transversal, whereas the latter ones are
mixed modes of transverse and longitudinal characters.

The electron-phonon interaction with acoustic phonon
modes arises mainly through the deformation-potential
coupling and the piezoelectric coupling. Although the de-
tailed form of the deformation-potential coupling is
dependent on the crystal symmetry [17], the most dom-
inant term can be described by Ed divu, where Ed is the
deformation potential. Hereafter only this term will be
taken into account. The torsional modes do not contrib-
ute to this coupling because of their transversal character.

In the polar semiconductors, the lattice strain produces
the lattice polarization and this polarization interacts
with an electron. The lattice polarization is given in the
Cartesian coordinates as Ppz(r) = (e ~ se,„e~se~„e3~ (e „
+e~~)+e33e„) for the wurtzite structure and as Ppz(r)
=e~4(e~, e,„e„~) for the zinc blende structure, respec-
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tively, where ec~ is the strain tensor and e~s, e3~, e33 and e~4 are the piezoelectric constants [18]. The electron-lattice in-
teraction is given by the potential energy of the lattice polarization in the electric field induced by an electron and is rep-
resented as

1d rV~,
~

'Ppz(r) = g PI, ~„I~,j(r, )YI (Q, )[bI ~+ ( —1) bit
E' r —re I l„m„l,m,j

(2)

where (r„A, ) denotes the position of an electron in the
spherical coordinates, —e the electron charge, e the
dielectric constant, YI ~ a spherical harmonic, and b (b t)
is the annihilation (creation) operator of the phonon
mode with the angular momentum indices (l,m) and the
radial quantum number j. The explicit expressions of
PI I j are too lengthy to be given here.

It is very important to examine the size dependence of
these electron-phonon interactions in order to understand
the mechanisms of the excitonic dephasing. In the case
of the deformation-potential coupling, the size depen-
dence arises from divu and can be estimated as

1 1 1 1
d&vu ~—

R F3 j~ (3)

where R is the radius of a spherical nanocrystal and the
first factor comes from the operation of div, the middle
one from the normalization of the phonon mode, and the
third one comes from the quantization of the phonon
mode. The eigenfrequency co of (1) is given by (X

+ 2p )h 2 =pco2 or pk 2 =pco, where h and k are deter-
mined by the boundary conditions [15] and scale as 1/R.
Thus the eigenfrequency co scales as 1/R and we obtain
the dependence in (3).

In the case of the piezoelectric coupling, the strain ten-
sor has the same size dependence as divu, namely, 1/R
and we obtain

d'rv Ppz(r) cx: R1 1 1

R' R' (4)

where the first factor comes from the volume integral, the
middle one from V(l/lr —r, l), and the third one comes
from the piezoelectric polarization Ppz(r). From these
size dependencies, we see that in the small size region the
deformation-potential coupling is dominant, whereas in

the large size region the piezoelectric coupling becomes
dominant.

Now that the electron-phonon interactions in semicon-
ductor nanocrystals are derived, we can calculate the ex-
citonic dephasing constant. The excitonic dephasing rate
is the decay rate of the excitonic polarization and in gen-
eral consists of the pure (adiabatic) dephasing constant
and a half of the longitudinal decay constant. The form-
er part arises from the Auctuation of the excitonic energy
due to the virtual emission and absorption of phonons
without the change of the excitonic state, whereas the
latter part comes from the phonon-assisted transitions of
the relevant excitonic state to other excitonic states. In
other words, the diagonal and oA'-diagonal matrix ele-
ments of the electron-phonon interaction with respect to
the excitonic states are responsible to the former and
latter parts of the dephasing rate, respectively. When
specified to the electronic ground state lg& and the lowest
excitonic state lex&, the diagonal part of the relevant
Hamiltonian in the Franck-Condon approximation can be
written as

H =
I g& 2 h cojbjtbj &gl+ lex& Z [hcojb~b, + yj (b~+ bjt) ]&ex l, (5)

where the subscript j is the phonon mode index, and coj is the mode frequency. The coupling constant yj. is the matrix
element of the electron-phonon interaction Hamiltonian taken between exciton wave functions. For example, in the case
of the piezoelectric coupling whose relevant Hamiltonian is given in (2), the coupling constant is given by

yi, =&@(r„ra)l g &I„m„imj(re)YI„m, (&e)+ g &c„,m„,im~«a)YI„, m„(&a)l@(re,ra)&,

1 $(ac) =g yj [1+2N(h co~ )], (7)

where N is the phonon occupation number. In the sum-
mation over the phonon modes in (7) only the acoustic

where C&(r„rg) is the exciton wave function. The term
proportional to yj in (5) represents the shift of the origin
of the lattice vibration in the excitonic state relative to
the ground state and can be interpreted also as represent-
ing the adiabatic Auctuation of the excitonic energy level.
The homogeneous linewidth due to this Auctuation can be
evaluated as [19]

modes are included because the LO modes have large fre-
quencies and are giving rise to the absorption or emission
sidebands rather than causing the energy Auctuation of
the excitonic level.

In the high temperature region such that kgT» Acoj,
the T-linear term of I I, is proportional to PJ yj/@co~. .
The size dependence of this coe%cient will be examined.
In the case of the deformation-potential coupling, since

yj ~1/R, coj a-1/R, and the phonon mode density scales
as Rwe ha, ve PJ. yj/hcoj ~ 1/R . Precisely speaking, the
size dependence of the coupling constant yj. is determined
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FIG. 1. The pure (adiabatic) dephasing rate of the lowest
exciton state in a CdSe nanocrystal with 11 A radius is plotted
as a function of temperature. The experimental data of Ref.
[13] are also plotted with error bars.

not only by the electron-phonon interaction Hamiltonian
but also by the exciton wave function. However, the
gross features can be grasped by the above argument
since the size dependence arising from the latter factor is
not very strong. In the case of the piezoelectric coupling
a similar argument shows that gj yj/hcpj. is independent
of the size. These are the key arguments to clarify the
underlying mechanisms of the excitonic dephasing in

semiconductor nanocrystals.
Recently, the excitonic dephasing rate in a CdSe nano-

crystal with 11 A. radius was measured as a function of
the temperature and a typical T-linear dependence was
observed, namely, I /, I p+AT+ - - -, over a wide range
of temperature [13]. The theoretically estimated pure de-
phasing rate of the lowest excitonic state for this nano-
crystal is shown in Fig. 1 as a function of temperature
with the experimental results [13]. The calculation has
been carried out without any adjustable parameter em-

ploying the material parameters such as Ed, e3], e33 and

e~s of bulk CdSe [20] and the exciton wave functions cal-
culated by the method of Ref. [21]. The overall good
agreement is obtained between the theory and the experi-
ment except for a constant background (—3 meV),
whose origin will be discussed later briefly. The
coe%cient A of the T-linear term of I /, is plotted in Fig. 2
as a function of 1/R . The linearity to 1/R is clearly
seen, indicating that the deformation-potential coupling is

dominantly determining the T-linear term. The experi-
mental value of 0.136 meV/K for an 11 A radius nano-
crystal is reproduced fairly well by the theory. For the
sake of reference, the experimental values of A for
CdSep ssSp ~2 nanocrystals [14] are plotted in Fig. 2

by open circles. Since the material parameters of
CdSep88Sp &2 are not much difterent from those of CdSe
in the virtual crystal approximation, we can confirm
the characteristic 1/R2 dependence of A due to the
deformation-potential coupling.

In order to see the relative ratio between contribu-
tions from the deformation-potential coupling and the

FIG. 2. The coefticient of the linearly temperature-
dependent term of the pure dephasing rate in CdSe nanocrys-
tals is plotted as a function of the inverse square of the radius.
The solid circle represents the experimental value for an 11 A
radius CdSe nanocrystal (Ref. [13]),while the open circles de-
pict the experimental values for CdSeo. &SSO&2 nanocrystals with
radii of 3, 4, and 6 nm (Ref. [14]).
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FIG. 3. The squared pure dephasing rate is decomposed into
two components I jf(DF) and I jf(PZ) arising from the deforma-
tion-potential coupling and the piezoelectric coupling, respec-
tively. These components in CdSe nanocrystals at 80 K are
plotted as a function of the radius.

piezoelectric coupling, we decompose (7) as I $(ac)
=I $(DF)+I g(PZ), where the first (second) term is the
contribution from the deformation-potential (piezoelec-
tric) coupling. In Fig. 3 these contributions are plotted as
a function of the radius for CdSe nanocrystals at 80 K.
As expected before, in the small size region I $(DF) is
overwhelming, whereas in the large size region I $(PZ) is
dominant. The crossover between the two components
occurs around R =70 A.

In CuCl nanocrystals embedded in NaCl matrices, the
excitonic dephasing rate was measured systematically as
a function of the temperature and the nanocrystal size
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FIG. 4. The coefficient of the linearly temperature-depen-
dent term of the pure dephasing rate in CuCl nanocrystals is
plotted as a function of the inverse square of the radius. The
open circles represent the experimental values of Ref. [7].
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[7]. The size dependence of the coefficient A of the T
linear term of I h was found to be well described by 1/R .
The coeScient 2 is calculated employing the material pa-
rameters of bulk CuC1 [20] and is shown in Fig. 4 as a
function of 1/R with the experimental data [7]. In this
case also the characteristic dependence of A on 1/R due
to the deformation-potential coupling can be confirmed
both theoretically and experimentally.

Finally, we will discuss brieAy the contribution of the
longitudinal relaxation processes to the dephasing con-
stant. As such processes, we can consider phonon-
assisted transitions to other excitonic states or to trapped
states associated with the nanocrystal surface and defects.
In the case of CdSe, the energy splitting between the A
and B excitons is very close to an LO phonon energy
(-26 meV) [20] and the LO phonon-assisted transition
to the B exciton is expected to contribute significantly to
the dephasing rate of the A exciton at high temperatures.
In fact, the deviation of the theoretical pure dephasing
rate in Fig. 1 from the experimental value at high tem-
peratures ()200 K) can be explained by this mecha-
nism. The localized excitonic states associated with the
surface or defects were found more than several tens of
meV below the lowest excitonic state [22]. Thus the
transitions to those states occur through multiphonon
emission and contribute an almost temperature-inde-
pendent term to the excitonic dephasing rate giving rise
to a constant background which persists even at T =0 K.
The almost constant (—3 meV) deviation of the theoreti-
cal pure dephasing rate from the experimental value in
Fig. 1 below —100 K can be explained by this mecha-
nism. However, quantitative estimate of these longitudi-
nal relaxation rates is left for future study.

In summary, the electron-phonon interactions in semi-
conductor nanocrystals, especially concerning the acous-
tic phonon modes, are derived and the size dependence of
the contribution to the excitonic dephasing rate has been
clarified for various electron-phonon coupling mecha-
nisms. On the basis of these results, the commonly ob-
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