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Effect of Betatron Motion on Particle Loss Due to Longitudinal Diffusion in High-Energy Colliders
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Strictly one-dimensional theories of particle loss due to longitudinal diffusion model the loss by an ab-
sorbing boundary condition at the separatrix of the underlying unperturbed motion. Particle loss always
occurs at a physical aperture and the loss is always coupled to the betatron motion. A theory of particle
loss which includes the effect of betatron motion is presented. Results are compared with Monte Carlo
simulations.

PACS numbers: 29.27.Eg, 29.27.Fh

It has long been understood that noise in the rf systems
of storage rings leads to a slow increase of the longitudi-
nal emittance of the stored bunches [1-3]. Especially in
the design of new hadron storage rings, intrinsic sources
of noise must be identified and investigated to insure that
they do not represent sources of unacceptable loss of
beam lifetime [4,5]. Conversely, the issue of controlled
injection of noise into the rf system of these machines for
the purpose of extracting beam has recently become of
considerable interest [6,7]. Here the idea is to "diff'use"
particles in momentum until, due to dispersion, they
reach a physical extraction septum.

Previous treatments of the loss process have been strict-
ly one dimensional, taking no account of the betatron
motion. The losses are described in terms of longitudinal
action and are assumed to occur at the separatrix of the
longitudinal motion. This does not correspond to a real
aperture stop and the quantitative results from these
theories exhibit significant discrepancies when compared,
for example, to Monte Carlo tracking studies [7].
Knowledge of these loss rates is essential in the design of
high-luminosity hadron colliders. In this paper, we ob-
tain a statistical model of the transverse x coordinates of
an ensemble of particles in a bunch, calculate the loss at
an x septum, and find excellent agreement with the track-
ing results.

It is conventional [8] to describe the transverse motion
in a synchrotron as a superposition of a closed orbit, x„,
and a (betatron) oscillation, xtt. The closed orbit, as the
name implies, is periodic with the machine period; the be-
tatron motion, in general, is not periodic. At a fixed lat-
tice position, the closed orbit of a synchronous particle is
the machine axis while an oA'-momentum particle exe-
cutes an oscillation about the closed orbit position of the
synchronous particle. This is the synchrotron oscillation,
of frequency 0 for small amplitudes. The motion is on
an energy oval in the longitudinal phase space of a simple
pendulum. The position of the closed orbit is related to

the relative momentum deviation, 6p by x„=g6p. Here,
g is the dispersion which is a lattice function. Under cer-
tain assumptions, the eAect of the noise can be described
as a diff'usion process in which there is a slow increase in

amplitude of the synchrotron oscillation on a time scale
long compared to a synchrotron period. Consequently,
there is an increase in the closed orbit amplitude of these
oA'-momentum particles. The position x =x„+x~ deter-
mines when a particle hits the stop. This could be an ex-
traction septum, an array of collimators, or even a
"dynamical" aperture which results from nonlinearities in

the system.
The theory [9-11] of the longitudinal dynamics in a

noisy rf system leads to a description of the evolution of
an ensemble by a diA'usion in the action, J, which is a
constant of the unperturbed motion. The time scales of
the diftusion in action, the synchrotron period, and the
betatron oscillation period are disparate with tq»t, )) tij.
Thus the collimation process sweeps an infinitesimal shell
in the transverse phase space (A, A+ dA ), where
characterizes a Courant-Snyder invariant and an infini-

A+dA

FIG. 1. Transverse phase space domain (schematic) swept
by collimation process. The longitudinal phase space is similar.
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tesimal shell (J,J+dJ) in the longitudinal phase space in

a time t, t, S t (see Fig. 1). The maximum betatron dis-
placement is related to A by lxtil, „=JPA, where P is

the usual betatron function [8].
In the presence of an aperture stop, a particle slowly

diff'uses toward the periphery. of the beam pipe until it
strikes the stop. The horizontal position of the stop is x,
and we assume the "image" of the stop in momentum,
x,/rl is inside the bucket. This is appropriate for either
the proposed superslow extraction [7] or momentum
scrapers [12]. The time it takes until the particle is lost,
or conversely, the loss rate, depends on both the closed or-
bit position (equivalently, action) and the betatron dis-
placement.

Consider particles which, at a given time, t, have not
yet reached the stop. Referring to Fig. 2, we see that
the protons which are inside the stop lie in the domain S
in (J,xp) space. The entire space is the quadrant 6:
J,xp~ 0. We have simply written xti for lxtil, „ in order
to keep the notation from becoming too cumbersome.
The domain S is bounded by segments of the coordinate
axes and the curve 8$: [xti,J=Jb(xp) l0 ~ xti ~ x,];
Jb(xp) is the action for a particle on an energy surface,
k:—(Bp),„/Sp„defined by k =kb(xp) = (x, —xp)/r16p, .
Here Bp, is the relative bucket half-height. For the pen-
dulum, Jb(xp) can be written in terms of elliptic in-

tegrals. It might be expected that, for these particles, the
two random variables xp and J might be statistically in-

dependent for all time because initially they are. That
this is not so is the crucial observation in the construction
of the theory. However, the calculation of the joint dis-
tribution is deceptively simple.

Consider the (time dependent) joint probability density

p (J,xp, t ) and the (time dependent) action conditional
probability density conditioned on xp, p(J, tlxs). Then,
by definition,

p(J t lxp) = D(J) p(J tlxp)= a
Bt

' BJ J (2a)

but with the boundary condition

p(Jb, t Ixp) —0 (2b)

The action dependent diffusion coe%cient is D(J). The
absorbing boundary now is dependent on xp and is just
the curve 6$ defined earlier. In 6 —S, the joint density
is a delta function. Furthermore, consistency requires
that the identity

p(xp) —=„, p(J, tlxti)p(xp)dJ

be satisfied. The joint density in 6 —4' is constructed so
this consistency condition is satisfied. It is never needed
to evaluate any quantity of interest although it is implicit
in the required conservation of probability. It should be
noted that the same arguments apply if the marginal den-

sity p(xp) has time dependence provided the evolution is
due to a process which is independent of the particle's
longitudinal action, J. Finally, the fraction of protons
which reach the stop is given, using conservation of prob-
ability, in terms of an integration of the joint density over
the domain S:

p(J, xtj, t) =p(J, t lxp)p(xp),

where p(x~) is the marginal probability density of xti.
Notice that we have used the symbol p for three different
functions. In what follows, we are careful to display the
arguments so there should be no confusion over which
function is used. These must be probability densities and
must be defined throughout 6. In the domain S, the pro-
tons have a marginal xp distribution which is just the ini-
tial distribution; they are Rayleigh distributed with pa-
rameter JeP, where e is the emittance. (The transverse
phase space variables are bi-Gaussian. ) We must now

find the conditional density, p(J, tlxti). This satisfies the
same dift usion equation considered in earlier work
[7,9-11]:

N(t) =1 — p(J, t lxtJ)p(xp)dJ dxp. (4)

X X)

It is also instructive to derive Eq. (4) in the context of
a first passage problem. Suppose T is the (random) time
a particle strikes the stop. This time depends on the
particle's betatron motion and is a random variable.
Conditioning on xp, the law of total probability gives

r x,
P[T & tj = P[T & tlxp]p(xp)dxp, (s)

where the left hand side (lhs) is the probability of not
reaching the stop in [O, t] Now, .

P[T & tlxp] =P[J(s) & Jb(xti), 0~s ~ tlxp], (6)

FIG. 2. Domain of random variables J and xp for particles
inside the aperture.

where J(t ) is the action stochastic process and the proba-
bility on the right hand side is fo p(J, tlxp)dJ where the
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Bessel series [9] for a linear diffusion coefficient and by
Fourier transforms [13] for a quadratic diffusion coeffi-
cient.

It is straightforward to apply these solutions to our
problem. We reiterate that the solution in terms of the
absorbing boundary condition at Jb(xp) is the required
conditional probability density. The solutions are func-
tionals of the initial density. It is convenient to express
the initial probability density in terms of k (0~ k ~ 1)
rather than the action J. There is a one-one mapping be-
tween the two: J(k) =(80/tr)k B(k), where B is related
to the complete elliptic integrals of the first and second
kinds, K and E, respectively; B(k ) = 1/k [E(k) —(1
—k )K(k)] and Jb(xp)—=J(k =kb(xp)). Then, the ini-

tial conditional probability density (in k) is

0
0 0.2 0.4 0.6 0.8

0
1.0

p (k, t =0
l xp) = (k/ at, )exp( —k /2at, ), (8)

J/Jb (0)

FIG. 3. DiAusion coeScients for amplitude and phase noise.

integrand is defined by Eq. (2). Therefore,

+c r lb(xp)P[T) tj =„p(xp) „p(J,tlxp)dJ dxp, (7)

and the lhs can be interpreted as the fraction of particles
reaching the stop in the time interval [O, t]. This is the
same as 1 N(t ), Eq—. (4).

In this paper, we consider two cases: white phase noise
and white amplitude noise. The exact diffusion coeAi-
cients are shown in Fig. 3 and for small action are seen to
be linear in the case of white phase noise and quadratic
for white amplitude noise [11]. If one simply uses the
small amplitude expressions for the diA'usion coefficients
all the way to Jb(0)—=Jb(xp)l„p —o, these diffusion coef-
ficients overestimate the actual diAusion. We see in Fig.
3 it is better to fit the approximations by forcing them to
be equal to the actual diffusion coefficient at Jb(0). The
linear fit to the diffusion coeAicient for white phase noise
and the quadratic fit in the case of white amplitude noise
are reasonable over most of the bucket; the approxima-
tion is very good in the latter case. This is important be-
cause the diA'usion equation is easily solved by Fourier-

where a„=[J~(j&)Xb/j, la„, Xb =Jb/J„J, =80/tt, and

po(xp) is the initial probability density of xp. We have
used the solution of Eq. (2):

p(k, tlxp) =pa„T„(xp,t)Jo(j„kJB(k)/Xb), (1oa)

T„(xp, t ) =exp[ —(tr 3/16) (Q 2ab'j „/Xb) t ], (10b)

1 rkba„= p(k, t =Olxp)
XbJi2 j„a

x Jp(j„kJB(k)/Xb)dk, (10c)

where j„ is the nth zero of the Bessel function Jo, t is the
time measured in machine periods, To, Q =(0/2tr)To,
and a& (rad) is the phase noise standard deviation.

Likewise, in the case of a quadratic diAusion coefficient
we use the Fourier integral solution [13] of Eq. (2) to
find

where at, =aq„/6P, an'd abp is the rms momentum sPread.
Note that because initially the random variables are sta-
tistically independent, the initial conditional density is the
same as the initial marginal density.

In the case of a linear diffusion coefficient Eq. (4) gives

Xc

N(t) =1 —2 dxppo(xp) ga„T„(xp,t),

PXc rkk( p) &Q a Jg ln[k B(K)/Xb]N(t) =1 dxppo(xp) dkp(k, t =Olxp) ~ erfc +2~o 2~Q, a.JF
Xb xQ, a,Jt ln[k B(K)/Xb]

k B(k) 2 2~g, o,j(

po(xp) = (xp/eP)ex p( xp'/2~P) . — (12)

We will use these results to make a comparison with
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where o., is the standard deviation of the amplitude noise
(relative to applied voltage) and erfc(z) is the comple-
mentary error function. Recall pii(xp) is the Rayleigh
distribution:

I Monte Carlo tracking studies [7,11]. However, one point
needs to be discussed. This is to account for what we call
transient particles. These are particles whose initial
phase coordinates are such that they will strike the aper-
ture stop in a synchrotron period independent of the
diffusion. They contribute to the count in Eqs. (9) and
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TABLE I. Values of Ãp. The two theoretical values are for the case of small amplitude ex-
trapolation and monomial fit.

0.2
0,2'
0. 1

0.05
0.02

'P =346 m.

Phase noise
N(sim)

584
343
187
51
13

N(theory)

732/595
542/363
261/179

69/49
14/14

0.5
0.2
0. 1

0.05
0.02

Amplitude noise
N(sim)

745
182
67
22

7

N(theory)

772/718
211/178

56/48
19/17
7/6

(11) as well as in the simulations. The number of tran-
sient hits are simply found by integrating the initial joint
distribution in x„, xp over the appropriate domain in the
space of the random variables. Initially, the random vari-
ables x„and xtt are independent and the initial joint dis-
tribution is just the product of the initial distributions of
the individual random variables. We do not present the
details; the calculation is completely straightforward.

We have been using Monte Carlo tracking studies in
the linear Superconducting Super Collider (SSC) lattice
to simulate the eAect of noise in the rf system for the pur-
pose of extracting particles [7,11] as well as understand-
ing its impact on collider performance [5,11]. Typically,
the simulations follow 1000 particles for about 10 turns
around the ring. In both the phase noise and amplitude
noise cases, independent random perturbations, Gaussian
with variance a, are applied at each turn. Comparisons
of the numbers of tracks reaching the aperture at the end
of the run with the value of N from the appropriate ex-
pression above are summarized in Table I.

The simulation results are from a single realization of
the random process. The machine parameters are the
nominal values for the SSC collider rings, o.

bp =5+10
e» = ltr mmmrad, 0 =26.6 rad/sec, and Bp, =2.6&&[0
The value of P„at the aperture stop was 1385 m in all

cases but one. The exceptional case is indicated. The
dispersion @=4m. For both simulation and theory, 31
transient particles have been taken into account. The
noise variances are larger than would be encountered in

practice. This is necessary to get a measurable loss rate
in a reasonable computing time. The first figure in the
column of theoretical values is the result using the extra-
polated small amplitude diAusion coeScient and the
second value was obtained by using the diffusion coeffi-
cient fit as described earlier. The agreement between the
simulation and theory is generally very good for the
latter. The largest discrepancy, about 30%, occurs for the
amplitude noise case with a, =0.1. There is reason to be-
lieve it might be due to statistical Auctuations in the sin-

gle realization of initial conditions.
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