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Dipolar Magnetic Order with Large Quantum Spin Fluctuations in a Diamond Lattice
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We report the first observation of dipolar magnetic order in a diamond lattice, in the RPO4-
(Mo03) ~2 30H20 compounds (R =Gd, Dy, Er). Theory predicts antiferromagnetic order for a diamond
lattice of dipoles, with a susceptibility at T=O depending only on lattice symmetry and spin. We present
experimental susceptibilities for ions with diAerent eAective spin which are consistent with these predic-
tions, and which confirm the existence of unusually large quantum spin fluctuations in these materials.
The fluctuations substantially exceed those of the Heisenberg antiferromagnet.

PACS numbers: 75.30.Cr

Dipolar magnetic order is an interesting problem be-
cause the dipolar Hamiltonian is known exactly, present-
ing the opportunity for a critical comparison between
theory and experiment. Cubic lattices occupy a position
of special importance, due to their simplicity and, more
importantly, the fact that ion moments are isotropic, re-
sulting in magnetic order that is determined by lattice
symmetry alone. Isotropy should also produce the largest
spin fluctuations. Among the primitive cubic lattices, bcc
and fcc are predicted always to be dipolar ferromagnets,
while only simple cubic is predicted to be antiferromag-
netic [1,2]. The antiferromagnetic case is of particular
interest because it is here that quantum fluctuations are
most directly observable, as we discuss below. The most
accessible model systems for studying the full dipolar
Hamiltonian are dilute rare earth insulating compounds.
While several such materials exist with fcc symmetry [31,
it is unfortunate from the experimental standpoint that
no simple cubic examples are known.

There does exist, however, at least one excellent model
system with diamond structure, which we find is also pre-
dicted to exhibit dipolar antiferromagnetism. This is the
rare earth (R) phosphomolybdate tridecahydrate series,
RPO4(Mo03)~2 30H20. We have carried out magnetic
measurements on the Gd, Dy, and Er members of this
series which are consistent only with antiferromagnetic
order [4]. They also confirm the existence of unique and

very large spin wave zero-point motion eAects, directly
observable in the susceptibility.

The classical ground state energy per spin of a cubic
lattice of point dipoles is
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free to minimize its energy by splitting into domains),
XFM =4tr/3. This establishes diamond as the most strong-
ly antiferromagnetic and most stable of the cubic dipolar
lattices. This result agrees with the observation that di-
polar antiferromagnetism is favored by relatively open
structures, in which a spin is surrounded by a small num-
ber of nearest neighbors with anisotropic angular distri-
bution [6]. The minimum antiferromagnetic ground state
energy in the cubic lattices has a monotonic behavior
when plotted as a function of coordination number, as
shown in Fig. 1.

The ordered diamond ground state is highly (sixfold)
degenerate, so that one expects the experimental suscepti-
bility to be isotropic and always equal to g&. Classically,
this is temperature independent, given (per unit volume)
by [1,7]

g~~ = (X =4tr/3)

A mean field calculation yields the same value. This re-
sult is unique in that it depends only on lattice symmetry,
through the eigenvalue k. Unlike the corresponding re-
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where k is a dimensionless, maximal eigenvalue of the di-

polar field matrix, and n is the spin density. For dia-
mond, we find Xd;,, =6.394 [5]. The predicted spin con-
figuration is a layered structure, with four sublattices
aligned in pairs along the cubic (110) axes. It is pictured
in Fig. 1, using a tetragonal unit cell containing four
spins, one from each sublattice. The magnitude of kd;„.

exceeds that for the sc lattice, X„=5.352, and also that
for ferromagnetic order (assuming the ferromagnet is
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FIG. 1. The classical energy per spin of the lowest-lying anti-
ferromagnetic arrays in cubic lattices, from Eq. (1), plotted as a
function of coordination number. The dotted line is the corre-
sponding ferromagnetic energy. Antiferromagnetism is predict-
ed for sc and diamond. The inset shows the predicted four-
sublattice Neel state for diamond, using a tetragonal unit cell.
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suit for exchange-coupled antiferromagnets, it does not
depend on interaction strength.

The RPO4(Mo03) i2. 30H20 materials and related
heteropoly acid salts are unique among ionic compounds
in having perfect diamond structure, space group OP [8].
It forms in this structure apparently because of the
tetrahedral shape of the PO4(Mo03)i2 anion rather
than any directionality of the bonds. Rare earths and
phosphomolybdate ions form interpenetrating diamond
lattices. The rare earth ions occupy sites of Td symme-
try. The cubic unit cell edge is 23. 1 A, with a nearest-
neighbor separation between magnetic ions of 10.0 A, so
that the exchange interaction should be very small. This
is confirmed by paramagnetic susceptibilities of spherical
samples well above the magnetic ordering temperatures,
which yield Weiss constants e,„due to exchange alone
[9]. For all three materials, 0,„=- —I mK. This is small
compared to the ordering temperatures, which are ap-
proximately 30 mK (Dy), 21 mK (Gd), and 17 mK (Er).
Thus these materials are extremely good approximations
to an ideal dipolar system. Single crystals were recrystal-
lized in water solution from 99.9% reagents. Powder x-

ray diffraction patterns obtained at 10 K show no change
in crystal symmetry from Op.

Static susceptibilities were measured in single crystal
samples of approximately ellipsoidal shape, coated with
vaseline to prevent loss of water of hydration. They were
cooled inside the mixing chamber of a dilution refrigera-
tor in fields of 0.5 and 0.05 mT. These fields are well
below the classical critical field [I] for these materials,
which is of order 10 mT. Thermal contact between sam-
ples and bath was surprisingly good. Powdered, uncoated
samples cooled in the same apparatus exhibited the same
ordering temperatures. Magnetization was measured us-

ing flux gate magnetometers, and sample temperature
was measured by a CMN thermometer next to the sam-
ples inside the mixing chamber.

The low temperature static susceptibility per un it
volume, corrected for demagnetizing field, is shown as a
function of T in Fig. 2. All three compounds show a fair-
ly sharp ordering feature, below which the susceptibility
is nearly constant. Within experimental uncertainty, the
susceptibilities were also isotropic. These features are
qualitatively consistent with those expected for a classical
dipolar antiferromagnet. The susceptibilities below T,
are very different in magnitude, however, in disagreement
with Eq. (2).

From the paramagnetic Curie constant, the ground
state of Er + in the phosphomolybdate structure is a dou-
blet I 7 with a theoretical g=6.8, corresponding to an
effective spin of 2 . Dy

+ has a quadruplet I 8 ground
state, corresponding to effective spin 2, with splitting pa-
rameters [10] satisfying P +g =28.35+' 1. This is very
close to values measured for H~5/2 ions in a variety of
other cubic environments [11—14]. The ground state of
Gd + is not known, but the susceptibility is consistent
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FIG. 2. Magnetic susceptibility per unit volume (dimension-
jess) as a function of temperature in three rare earth phospho-
molybdates with diamond structure, corrected for demagnetiz-
ing field. Sample masses are 0.2008g (Gd), 0.0676g (Dy), and
0.0834g (Er).

with S= 2 down to the ordering temperature. This is
similar to the situation in fcc dipolar Gd compounds [3].

When the susceptibilities of Fig. 2 in the zero tempera-
ture limit are plotted as a function of I/S, where S is the
effective spin, a nearly linear plot results, shown in Fig. 3.
The error bars are due primarily to uncertainty in the
sample demagnetizing factors. This is the behavior ex-
pected of an antiferromagnet with unusually large quan-
tum spin fluctuations, expressed by the spin wave result
[15]

g~(T =0) =g~(l —AS/5 —AE/2Eii) . (3)

Here g& is the classical Neel state susceptibility of Eq.
(1). AS/S and AE/Eo are the sublattice spin reduction
and ground state energy shift due to quantum zero-point
motion, both proportional to I/S. From the least-squares
slope of the line, we obtain AS/S+AE/2Eo = (0.36
+.0.04)/S. The smallest susceptibility, for Er (S= —,

' ),
is reduced by more than 50% from the largest (Gd), due
to fluctuations. This substantially exceeds the fluctua-
tions predicted for the nearest-neighbor Heisenberg anti-
ferromagnet in three dimensions. The Heisenberg predic-
tion for AS/S+AE/2Eo in the sc lattice, for example, is
0.127/S [16]; for the diamond lattice, 0.192/S. The in-
tercept of the line at I/S =0 corresponds to the classical
limit. It has a value g(1/S=O) =0.48 ~0.15, which is
not far removed from the theoretical expectation, g~ = (X—4x/3) ' =0.453. This agreement is probably fortui-
tous, since the uncertainty associated with the sample
demagnetizing factors (+ 30%) is larger than the
difference between theory and experiment. The slope of
the line in Fig. 3, and hence the magnitude of the zero-
point motion, is much less sensitive to this uncertainty. It
seems clear that there exist large quantum spin-
fluctuation effects in these materials, and by inference,
probably in other cubic dipolar magnets.
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FIG. 3. Experimental susceptibility extrapolated to T=0,
plotted as a function of 1/S, showing the large eAect of quan-
tum spin fluctuations.

The substitution of ions with diA'erent S into the phos-
phomolybdate structure thus provides an unusual direct
measurement of quantum spin Auctuations in a thermo-
dynamic quantity, efrectively at T=0. In exchange-
coupled systems, this is ordinarily not possible, because
the susceptibility depends additionally on the exchange
constant J, and S cannot be varied without changing J as
well.

The magnitude of the spin fluctuations agrees rather
well with a spin wave calculation. Assuming the classical
Neel state above, we obtain the dipolar spin wave spec-
trum of diamond by numerical diagonalization of the
8X8 matrix Hamiltonian, for a representative set of k. It
is shown in Fig. 4. The tetragona1 Brillouin zone corre-
sponds to the unit cell of Fig. 1. The spectrum has four
branches, with a zero in one branch at the zone center. A
second branch shows the nonuniform convergence at
k =0 characteristic of dipolar antiferromagnetism [17].
The ground state energy in this approximation is

4
Ep" =Ep(1+1/S)+ 2 g harp[ =Ep(l+AE/Ep), (4)

where ro$ is the spin wave energy in branch i. A numeri-
cal evaluation of the sum yields a zero-point motion term
(AE/Ep)d; =0.231/S. This result is nearly identical to
that previously calculated for the simple cubic dipolar lat-
tice, (AE/Ep)„=0. 236/S [17]. For comparison, the cor-
responding value for the nearest-neighbor Heisenberg an-
tiferromagnet on a diamond lattice is yd;, /zS =0.147/S.
The sublattice spin reduction is similarly large. %'e ob-
tain hSd;. =0.224, a 45% reduction for 5= 2 . This is
nearly twice the Heisenberg result, dSg;, (Heis) =0.118,
but close to that for dipolar sc, hS„=0.252. The unusu-
al size of the dipolar spin Auctuations may be related to
the fact that the total magnetization M, is not a con-
served quantity, as it is in the isotropic Heisenberg model.
From these results we calculate the susceptibility at T=O
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FIG. 4. Calculated dipolar spin wave spectrum for diamond.
One branch is gapless at the zone center; another shows nonuni-
form convergence there. The diamond cube edge equals 2a.

to be [from Eq. (3)]

g~"(T =0) =g~(l —0.340/S) .

The fluctuation term 0.340/S agrees within experimental
error with the measured slope in Fig. 3, (0.36+' 0.04)/S.

A calculation of g[~ yields

1 t)g«~(T =0) =- g pro' =0.031/S.21' 'dH
(6)

While it is roughly an order of magnitude smaller than

g~(0), it is not zero, as it is in the Heisenberg antifer-
romagnet. The difference is due to the nonconservation
of M, for the dipolar Hamiltonian.

These results should be relatively insensitive to the
presence of a small residual exchange interaction. The
eAect of exchange is largest on low-lying excitations,
where it might be expected to open up a gap in the spin
wave spectrum. This will not happen in the case of the
diamond lattice, however, because its spectrum goes to
zero at the zone center, just as the exchange spectrum
does.

In nuclear dipolar systems studied by N M R, such as
CaF2, these eAects are reduced by approximately an or-
der of magnitude. In such experiments, the dipolar Ham-
iltonian is a perturbation compared to the larger Zeeman
energy. The effective Hamiltonian is not the full dipolar
Hamiltonian, but only the part of it which commutes with
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the Zeeman energy [18]. This "truncated" dipolar Ham-
iltonian does not have all the symmetries of the original
version, and has a large gap in its spin wave spectrum
[19]. The gap leads to very small spin-I]uctuation e[fects
and nearly classical behavior.

Ferromagnetic order is expected to lead to qualitative-
ly similar temperature dependence of the experimental
susceptibility g,„~=M/H, „&. However, its value below T,
is equal simply to the inverse of the sample demagnetiz-
ing factor, and has no dependence on 5 [20]. The pres-
ence of quantum Auctuations is masked by the motion of
domain walls. For this reason, the observed susceptibili-
ties of the rare earth phosphomolybdates are consistent
with antiferromagnetic order, but not with ferromagne-
tism.

In summary, we have observed magnetic behavior in

the rare earth phosphomolybdates which is consistent
with dipolar antiferromagnetic order. Quantum spin I]uc-
tuations substantially exceeding those of exchange-
coupled antiferromagnets are directly observable in the
susceptibility. The magnitude of these fluctuations agrees
well with theory. Dipolar magnets, commonly perceived
as inherently more classical than those based on ex-
change, in fact appear to be just the opposite.
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