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Towards an Ab Initio Description of Magnetism in Ionic Solids
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The physical contributions to the KNiF3 magnetic exchange coupling integral have been obtained
from specially designed ab initio cluster model calculations. Three important mechanisms have been
identified. These are the delocalization of the magnetic orbitals into the anion "p" band, the variational
contribution of the second-order interactions, and the many-body terms "hidden" in the two-body opera-
tor of the Heisenberg Hamiltonian.

PACS numbers: 75.10.Jm, 71.10.+x

Magnetic properties of ionic solids have experienced a
renewed interest due to the discovery of high-T, super-
conductors [1,2]. A relationship between magnetism and
superconductivity arises from the new superconductor
mother compounds, such as La2Cu04, which are antifer-
romagnetic insulators close to the Mott transition [3].
From the point of view of theory, two approaches have
been used. The first one is based on local spin-density
calculations [4] whereas the second one uses simplified
model Hamiltonians [5-7]. While highly desirable, a
fully ab inItio description has not been reported yet. The
reason for this lack is that, in spite of the high degree of
accuracy that can be achieved by the modern quantum
chemistry, the problem of magnetism in solids is very
di%cult since it involves very small energy diAerences.

For molecular complexes, de Loth et al. [8] suggested a
second-order nonempirical treatment based on the theory
of eA'ective Hamiltonians. A variational version of this
procedure has been reported recently and generalized to
different physical situations [9,101. In principle, there is

no reason why such theoretical approaches could not be
applied to solids as well if a suitable model is used. This
is the aim of the present work.

In a series of papers Malrieu and co-workers have used
a magnetic model to study alkali metals, conjugated hy-
drocarbons, and related systems [11—14]. In this model
the exchange coupling integral (J) is extracted from ac-
curate calculations in simple models. The idea behind
this approach is very attractive because it implies that the
magnetic behavior of extended systems can be obtained
from nonempirical model Hamiltonians with parameters
extracted from accurate quantum chemical calculations
on small models, usually dimers.

The aim of this work is to explore the magnetic struc-
ture of a simple ionic solid such as KNiF3 using a
parameter-free approach (see also Refs. [15,16]). We
will use diAerent cluster models for KNiF3 and diAerent
ab initio wave functions to show that there are three main
factors governing magnetism in KNiF3. For the first
time, we will quantify the importance of these contribu-
tions to the final coupling exchange constant.

The KNiF3 cubic perovskite is known to be an excel-
lent example of a simple nearest-neighbor exchange
Heisenberg system. The spin Hamiltonian can be written
simply as

H = —Q JS;SI,
(ij )

where (ij & means that the summation in (1) is over all
nearest-neighbor pairs i and j Ni + cations on KNiF3
structure. Moreover, the ground state of Ni + in KNiF3
is F so each cation can be simply seen as a particle with
a total spin angular momentum 5=1.

If we consider only two Ni + cations the diA'erent spin
rearrangements give rise to one singlet (IS&), one triplet
(IT&), and one quintuplet (IQ&) state. Since the three
states do not mix, it is easy to show that Is&, IT&, and IQ&
are eigenfunctions of the spin Hamiltonian (1) holding

H Is& =Fs Is& =2J Is&,

(2)

Hence, the ground state is the antiferromagnetic cou-
pling of the two spin cations and E~ —ET provides a way
to estimate the value of the exchange coupling integral J,
whereas ET —Eg will be always 2J. In this work we will

use this Heisenberg picture to obtain J from ab initio cal-
culations. In the above discussion it has been assumed
that H contains only two-body operators or that any col-
lective eAect is also contained in J provided it is obtained
from experiment. In order to explore in more detail the
origin of J we suggest to use a model containing four
Ni + cations in a square geometrical arrangement. The
number of spin states involved in the coupling of four
Ni + cations (each with S=l) is large: one state with
S=4, three with S=3, six with S=2 and S=l, and
three with S=O. Of these states, we are only interested
in the ferromagnetic (S=4, IF&) and the lowest singlet
IA&. While IF& is already an eigenvector of H, to obtain
the spin eigenfunction IA& one can make use of the
Clebsch-Gordan coefficients and diagonalize the matrix
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representation of H. The final result is

HIF& =EF IF& = —4JIF&,

0~2) =E~ (A) =+4.680188J )A),
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culation in the lowest state. It is also possible to analyze
the effects introduced when going from the purely ab ini-
tro ionic model to the SCF functions by using the con-
strained space orbital variation (CSOV) method [19,20].
We have used all these possibilities but here will only re-
port the most illustrative calculations.

When the MO basis set has been decided there is still a
choice for the final form of the cluster wave function. In
this work we use two kinds of wave functions. The first
one is a full configuration interaction in a small limited
orbital space; this is a complete active space configuration
interaction (CASCI) wave function and is univocally
defined once the orbital space (the CAS) has been
defined. Our CAS contains only the open-shell magnetic
orbitals. For the Ni2F and Ni2FII cluster models there
are four electrons in four orbitals (those arising from the

e~ electron configuration on each Ni + cation) giving rise
to a final CASCI wave function containing 36 Slater
determinants (if no symmetry is used). For the larger
Ni4F4 model, the CAS contains 8 electrons in 8 orbitals
leading to 1252 determinants. The CASCI wave function
contains all physical effects in the CAS, such as kinetic
exchange, but lacks many important situations involving
simultaneous processes in magnetic centers and neighbor
ious, as double spin polarization, charge transfer, or ki-
netic exchange polarization [8,21,22] which are only con-
sidered when correlation is included. The most sig-
nificant of these missing interactions can be introduced by
performing a specific configuration interaction (SCI) us-

ing the CAS as reference space but including only those
configurations which contribute to the energy difference
between the different spin states. If the CAS is taken as
a model space one can use the framework of the quaside-
generate perturbation theory (QDPT) to construct an
effective Hamiltonian which up to second order is

(3)

&e;JH"fe, & =&+;/H/e, &+,i,j E CAS.
k Is cAs Eo Ek

(4)

Then, one can use diagrammatic many-body perturbation
theory to demonstrate that only certain ~k) determinants
outside the CAS contribute to the energy difference be-
tween states belonging to the CAS [8,23,24]. In this

which tells us that E~ —EF =+8.680188J and permits a
different way to obtain J from finite models.

We suggest using finite cluster models to obtain the
different contributions to J. The first model contains ex-
plicitly two Ni + cations and their bridge F anion and
will be denoted as Ni2F (see Fig. I). In the second mod-

el, we explicitly include the F anions surrounding each
one of the Ni + cations, leading to the Ni2F]] model. Fi-
nally, we use a cluster model containing explicitly four
Ni + cations arranged in a square plus their four bridge
anions. This Ni4F4 model is shown in Fig. 2. These mod-

els are embedded in an array of optimized point charges
to explicitly include the Madelung potential [17].

Once the physical model is chosen, all we have to do is

compute the electronic wave function for each one of the
electronic states involved in the spin coupling in which we
are interested. In this work, we use nonempirical pseudo-
potentials to describe the inner cores of Ni and F atoms
and a basis set of contracted Gaussian-type orbitals
(CGTOs) to describe the 3d electrons of each Ni + cat-
ion and the 2s 2p of each F anion. The CGTO basis
sets we use are rather large (3s 3p5d/2s2p3d) for each
Ni + cation and (5s5pld/3s3pld) for the bridge F
anions. The embedding F anions have been described
with a minimal basis set contraction of the preceding
primitive GTO basis. We must point out that the quanti-
ties of interest (Es —ET and E~ —EF) have been found
to be rather insensitive to improvements in the GTO basis
sets. For instance, results do not change upon inclusion
of f functions on the Ni + cations or of a second polar-
ization function on F

Once the basis set of CGTOs is given, one must obtain
the set of one-electron functions [i.e. , molecular orbitals
(MOs)] which will be used to construct the ¹Iectron
(or Slater determinants) basis in which the total wave
function is expanded. There are several possible choices
for the one-electron MO basis set. One can simply take
orthogonal atomic orbitals (OAO) which correspond to
the ab initio valence bond model recently reported [18],
use MOs from a Hartree-Fock self-consistent field (SCF)
calculation in the highest multiplet or those from a
multiconfigurational self-consistent field (MCSCF) cal-
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FIG. 1. Schematic representation of the Ni2F cluster model
of KNiF3.

FIG. 2. Schematic representation of the Ni4F4 cluster model
of KNiF3.
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TABLE I. Ab initio CASCI and SCI(CAS) energy
differences (in K) between the different spin states correspond-
ing to two interacting Ni + cations. Notice that according to
the Heisenberg picture Eg —ET =J ~hereas ET —Eg =2J.
Cluster model

Ni2F

Ni2F) 1

MO

OAO

SCF

CASSCF

SCF

CASSCF

Wave function Eg —ET ET —Eg

CASCI
SCI(CAS)

CASCI
SCI(CAS)

CASCI
SCI (CAS)

CASCI
SCI(CAS)

CASCI
SCI (CAS)

1.3
—13.9
—10.6
—22.4
—13.3
—23.0
—21.0
—44.2
—25.6
—45. 1

2.2
—26.5
—21.3
—44.8
—26.5
—46.4
—42.2
—89.0
—50.8
—92.2

work we have generated all the determinants which con-
tribute up to second order to the energy diff'erence be-
tween the different states; the resulting list of deter-
minants is variationally included in the final Cl wave
function (see [9,10]). In the Ni2F cluster where no sym-
metry has been considered there are 57676 determinants
in the diAerential space, in Ni2Fii when the D2~ point
group is specified there are 73 664 or 73432 depending on
the symmetry of the wave function of the considered
space and for the Ni4F4 the number is so large that it
cannot be handled with the present computer facilities.
Results from this computational approach will be denoted
as SCI(CAS).

Finally, we would like to point out that the beauty of
ab initio calculations is that results are uniquely defined
once the cluster geometry, basis sets, and pseudopotential
parameters are specified. This information is available
upon request to the authors.

Here we report results for the ab initio calculated ex-
change coupling integral J appearing in Eq. (1) and com-
pare it with the experimental value reported by Lines
[251. From a set of complementary experimental tech-
niques a value of J=89+ 4 K was reported.

For the smallest Ni2F model, if the starting orbitals are
simply the OAO the CASCI result leads to the wrong
conclusion that the ferromagnetic state is the lowest one
although the energy diAerence between the three states is
very small (see Table I). However, introduction of the
second-order interactions correctly predicts the compound
to be antiferromagnetic. Moreover, ET —Eg is always
twice Ep —ET as predicted by the Heisenberg picture.
Indeed, this feature holds for all the forthcoming series of
calculations reported here. Another interesting result ap-
pears if the CASCI wave functions are obtained using the
SCF (for the ~Q) state) or CASSCF (for the ~S) state)
MOs. In both cases KNiF3 is predicted to be antiferro-
magnetic at the CASCI leve1 with a considerable contri-
bution to J from the SCI(CAS). The calculated value
for J is, however, 4 times smaller than experiment. We
must point out that within this cluster model we have

been unable to improve the result by systematic improve-
ment of the basis set. We have also considered the possi-
bility of the superexchange interaction with the K
cations but without any improvement on J.

Now let us consider the more extended Ni2Fii cluster
model. In this case we find a dramatic eAect already at
the CASCI level, the calculated value being twice that of
the smaller Ni2F cluster. We have investigated the origin
of this effect by performing the CASCI calculation with
diAerent sets of orbitals obtained at each step of the
CSOV procedure. The result is also surprising: The J
value is only aA'ected when the magnetic orbitals are al-
lowed to mix with the "p" band of the Fii unit. This
physical eA'ect is the delocalization of the magnetic orbit-
als. The correlation eA'ects accounting for the second-
order interactions are also enhanced due to the larger or-
bital space in which the SCI(CAS) is carried out. The
final result for J is still too low by a factor of almost 2. It
is diScult to see which are the lacking effects if only two
interacting cations are considered. The contributions of
the determinants appearing at higher orders might be im-
portant but we think this is unlikely to be the case.

In order to investigate the collective eAects that may be
"hidden" in the two-body J operator we have carried out
CASCI calculations for the Ni4F4 cluster model, J being
extracted from Eq. (3). The resulting value for J is 17.7
K which has to be compared with 10.6 K when the Ni2F
cluster model is considered at the same level of calcula-
tion. The fact that now each Ni + interacts directly with
two other cations produces a 67/o increase on the ab ini-
tio calculated J. This result shows the importance of col-
lective eAects in the magnetic behavior of KNiF3 and
precludes using two interacting atoms to derive the ab in-
i tio Heisenberg Hamiltonian.

Results for the Ni2F and NiqFii permit us to under-
stand two basic contributions to the magnetic interaction.
These are the diA'erential correlation effects [see Eq. (4)]
and the delocalization of the magnetic orbitals. Correla-
tion eA'ects are larger for the Ni2Fii because the orbital
space relevant to Eq. (4) is larger than for Ni2F. Like-
wise, the eAect of delocalization will be larger if a larger
cluster is used. However, it is diScult to see how to im-
prove the description obtained through the NiqFii model
without introducing more magnetic centers. It is impor-
tant to see that these two factors already account for 50%
of the total magnetic interaction. We have proven that
the diA'erence from the experimental J has its origin in
the collective eAects. The Ni4F4 cluster is probably too
small and quantitative results will need a Ni6F6 cluster
with a central cation having the proper magnetic coordi-
nation. However, it is unlikely that the physical mecha-
nism arising from the present study will be changed.

In conclusion, for the first time ab initio techniques
have been applied to understand the diAerent physical
contributions to the exchange coupling integral (J) in-
volved in the Heisenberg Hamiltonian in ionic solids. By
using a set of diAerent cluster models we have been able
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to identify three leading mechanisms contributing to J.
These are the magnetic orbital delocalization into the
anion "p" band, the correlation effects accounting for ki-
netic exchange and simultaneous processes involving both
metal and neighbor ions, as charge transfer, double spin
polarization, or kinetic exchange polarization, and the
collective effects "hidden" in the two-body operator. The
three contributions are important and can be reasonably
estimated from well designed ab initio cluster model cal-
culations.
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