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Manifestation of Chern-Simons Gauge Flux
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We show that the recently developed Chern-Simons gauge theory for fractional quantum Hall effect
leads naturally to a striking prediction that an applied gate voltage coupled to an isolated region in a
two-dimensional electron gas can induce Little-Parks oscillations of the longitudinal conductance in
the quantum Hall devices at odd denominator filling fractions. For even denominator filling fractions,
the Chern-Simons fermions are in a Fermi liquid state, and the conductance fluctuations are similar
to the Aharonov-Bohm conductance oscillations of a mesoscopic metal.
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Recently a new theoretical framework has been de-
veloped to describe the fractional quantum Hall effect
(FQHE) in two-dimensional electron gas (2DEG) sys-
tems, based on a Chern-Simons gauge theory which
can be shown to map exactly to the original inter-
acting electron system [1,2]. Although this new the-
oretical framework can be shown to be equivalent to
the original Laughlin variational wave-function approach,
it offers the distinct advantage of providing a simple,
macroscopic Ginzburg-Landau description of this com-
plex interacting electron problem, somewhat similar to
the Ginzburg-Landau approach for the superconductiv-
ity problem. The order parameter of this theory is re-
lated to the hidden off-diagonal long-ranged order in the
Laughlin’s wave function [3]. Many interesting new the-
oretical concepts have been developed on the FQHE us-
ing this new theoretical insight, such as the prediction of
the Hall insulator state, the mapping rules between the
various different fractional Hall states as well as the inte-
ger quantum Hall states, and the global phase diagrams
for the FQHE [4]. This Chern-Simons-Landau-Ginzburg
(CSLG) theory has also been applied recently to the even
denominator (e.g., v = 1) regime with some success [5, 6],
where the effects of dynamical fluctuations of the gauge
field on the Fermi surface properties have been studied,
in particular in relation to interpreting the acoustic data
at the one-half filling factor [7]. The overall features
of the magnetotransport data around even denominator
filling fractions can also be explained within this model
6, 8].

The success of this new approach to quantum Hall
effect is based in large part on the analogy with some
known condensed matter systems that have been stud-
ied extensively in the past. In the case of the odd de-
nominator filling fractions, the electrons are mapped to
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Chern-Simons (CS) bosons in a superfluid ground state,
and in the case of even denominator filling fractions, they
are mapped to Chern-Simons fermions in a Fermi liquid
ground state. From this point of view, various experi-
ments in the quantum Hall systems are manifestations of
the known properties of these two well studied condensed
matter systems [1-6]. In view of this success, it would
be highly desirable to have a direct experimental test of
this new picture for FQHE.

In this Letter, we propose a series of experiments that
could provide such a direct test. In particular, we con-
sider an inhomogeneous fractional Hall system with an
external capacitive gate applied to an isolated region in
the center of the device. We make a striking prediction
that variations of the gate voltage should induce Little-
Parks (LP) or Aharonov-Bohm (AB) type oscillations
in the system’s longitudinal conductance. For the case
of odd denominator fractional Hall states, the Chern-
Simons bosons are in a superfluid state, and they see the
applied gate voltage as a source of magnetic flux. The re-
quirement of flux quantization of a superfluid state leads
to the quantized fractional charge of the quasiparticles,
and the varying gate voltage leads to an effect similar
to varying an external flux in a superconductor in the
Little-Parks experiment: The resistance oscillates with
the period of the fundamental flux quantum. In the case
of even denominator filling fractions, the Chern-Simons
fermions are in a Fermi liquid ground state. They too see
the applied voltage as a source of magnetic flux, and the
effect of varying the gate voltage is similar to the effect of
varying the Bohm-Aharonov flux in a normal metal ring:
If the sample size is smaller than the inelastic mean free
path, there are well defined oscillations in conductance
with a period of hc/e.

Our starting point is the CSLG Hamiltonian for

3533

© 1993 The American Physical Society



VOLUME 71, NUMBER 21

PHYSICAL REVIEW LETTERS

22 NOVEMBER 1993

the FQHE:
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where U(x) is the electrostatic potential acting on the [
electron gas, either from random impurity scattering po-
tential or from an applied gate voltage, and A(x) is the
vector potential due to the applied magnetic field B (in
the z direction perpendicular to the 2DEG). V(x — y)
is the (Coulomb) interaction potential among electrons,
and 6p(z) = p(x) — p is the deviation from uniform den-
sity. a(x) is the Chern-Simons gauge field, defined as

b(x) =V x a(x) = pomp(x), ()

where ¢g = hec/e is the flux quantum. When m = 2k + 1
is an odd integer, the matter field ¢(x) corresponds to
a boson field. Whereas for even integer m = 2k, ¢(x)
corresponds to a fermion field. Since the filling factor
v = ppo/B, we see that when v = 1/m, the new CS
particles see no net magnetic field, except a fluctuating
one due to inhomogeneities in the self-consistent particle
density, 6p(x).

To illustrate our idea of gate voltage induced Little-
Parks oscillations due to the CS gauge field, let us con-
sider a high mobility 2DEG sample where a capacitive
gate of mesoscopic dimension (e.g., with an area of or-
der A ~ 1071 c¢m?) is coupled to an isolated region of
the sample, as depicted in Fig. 1. Assume the external
magnetic field is such that v = 1/(2k + 1). The new CS
particles [with m in Eq. (2) chosen to be 2k + 1] de-
scribed by operators ¢(x) obey Bose statistics, and these
particles on average do not see an average magnetic field,
except a fluctuating one due to §p(x). It is by now well
established that these CS bosons condense into a Bose-
Einstein superfluid, which is responsible for the observed
fractional quantum Hall effect in the system’s transport
properties (0g; — 0, and o4y = 5%'1+_1%) (1, 2]. Suppose
we now turn on a gate voltage V, which is coupled ca-
pacitively to the central “hole” region in Fig. 1. The
application of this voltage leads to a change in the lo-
cal density dp(z) = p(z) — p, which in turn results in
a net magnetic field 6b(z) = B — b(x) localized inside
the hole region. However, the net flux inside a multi-
ply connected superfluid system ® is not arbitrary, but
quantized in units of ¢g = hc/e, chosen in such a way as
to minimized the “kinetic” energy

E(®) = (® — ®,)%/2L . (3)
Here ®, = (2k 4+ 1)CVy¢o/e is the flux induced by the
gate voltage and can be changed continuously, C' is the
capacitance of the hole region with respect to the gate,
and L is a parameter which can be related to the quasi-
particle creation energy. The quantization condition is
accurate as long as the sample width is large compared
with the magnetic length. For ®; = N¢g, E(P) is de-
picted in Fig. 2(a). In this case we obtain ® = N¢q, and
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we see that there is a gap to adding one more flux quan-
tum to the system, AE = ¢2/2L. Integrating Eq. (2)
over two-dimensional space we obtain ® = (2k+1)¢oQ/e,
where @Q is the induced charge on the hole. Thus adding
one unit of flux is equivalent to adding Q = e/(2k + 1)
unit of fractional charge, and this energy can therefore be
identified with the creation energy of a Laughlin quasi-
particle, or the incompressibility gap. Denoting this gap
by A(2k + 1), this allows us to identify the parame-
ter L through ¢%/2L = A(2k + 1). However, when
&, = (N +1/2)¢po, E(®) is shown in Fig. 2(b), and
we see that ® = (N + 1)¢g is degenerate with & = N¢y.
The incompressibility gap vanishes and dissipation could
occur in this case. Equations (2) and (3) therefore lead
to a highly nonlinear, in fact stepwise dependence of the
screening charge @ on the applied gate voltage [9], as
shown in Fig. 2(c). Whenever &, = (N + 1/2)¢o, Q
changes by e/(2k + 1). At this value of ®,, there is no
gap to add a fluxon to the hole region, and the change
in Q, or equivalently ®, is accomplished by the spon-
taneous creation of a quasiparticle and quasihole pair
(equivalent to a fluxon antifluxon pair) in the bulk fol-
lowed by a tunneling process in which the quasihole goes
to the center hole region and the quasiparticle goes to
the edge of the sample. Since the tunneling motion of
fluxons across the superfluid region is associated with a
longitudinal voltage drop (due to the Faraday effect), one
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FIG. 1. Geometry of the inhomogeneous two-dimensional
electron gas device under our study. It has an Aharonov-
Bohm ring type geometry. The central (isolated) region of
area A is coupled to a capacitive gate. The two solid lines
indicate the forward and backward Feynman paths which are
necessary for calculating the Aharonov-Bohm conductance os-
cillations.
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FIG. 2. For odd denominator states: (a) Energy as a func-
tion of ® for &, = N¢o. (b) Energy as a function of & for
®y = (N +1/2)¢o. (c) Induced charge Q on a capacitive gate
as a function of gate voltage, @ jumps by e/(2k + 1) when-
ever &, = (N + 1/2)¢o. (d) Oscillations of the longitudinal
resistance as a function of gate voltage. Resistance peaks at
&, = (N + 1/2)¢o, similar to the peaks in the Little-Parks
experiment of a superconductor. Note the period in the gate
voltage is proportional to v = 1/(2k + 1).

should observe a resistance peak at this value of ®,. The
fundamental periodicity in @ is ¢o. This implies a volt-
age periodicity of AV, = szlW’ i.e., proportional to
v = 1/(2k+1). These resistance oscillations are similar to
the Little-Parks resistance oscillations of a superconduc-
tor in an applied magnetic field, where resistance peaks
at ¢ = (N + 1/2)¢o/2; the factor of 2 difference with
our case comes from the charge 2e of the Cooper pairs.
The resistance in between the peaks should vanish ex-
ponentially as temperature approaches zero. We suggest
that in addition to measuring the resistance oscillations
at a given temperature, one also measure the activation
gap from the temperature dependence, to verify that it
vanishes at &4 = (N + 1/2)¢o.

However, it has been argued by Thouless and Gefan
[10] that at zero temperature the process of quasiparticle
and quasihole tunneling proceeds with a rate that de-
pends exponentially on the width of the Hall bar. There-
fore, the gate potential has to be varied at a rate slower
compared to the quasiparticle quasihole tunneling rate
in order to observe the above mentioned voltage period-
icity. A much faster rate is the tunneling of a real elec-
tron from the center hole region to the edge, since the
tunneling barrier for this process is that between the 2D
electron gas and the surrounding reservoir. If the rate for
varying the gate potential is faster than the quasiparticle
quasihole tunneling rate but slower than the tunneling
rate of real electrons, then the resistance oscillation with

a voltage periodicity of AV, = e/C is expected. This
periodicity does not contain any information about the
fractional charge.

This phenomenology is very similar to that of the
Coulomb blockade of a quantum dot coupled to capaci-
tive gate [11]. Indeed, the Coulomb blockade mechanism
for quasiparticles with charge e* = e/(2k + 1) has been
recently invoked [12] to interpret the resistance oscilla-
tions experimental data by Simmons et al. [13]. In this
picture, the scattering of edge states gives rise to the re-
sistance peaks mentioned earlier. In the absence of the
applied gate voltage, resonance tunneling is prohibited
since the intermediate state has a Coulomb energy of
(e*)?/2C above the Fermi energy. However, in the pres-
ence of an external gate voltage, this is reduced by an
amount of e*Vy; thus at V; = e*/2C, the energy of the
central Coulomb island is degenerate with the Fermi en-
ergy, and the resonant scattering between the two edge
states gives rise to a peak in the longitudinal resistance.

In a series of experiments by Simmons et al. [13], the
conductance fluctuation is measured by both varying the
external magnetic field and the uniform back gate volt-
age. The observed periodicity in back gate voltage is
the same for v = 1 and v = % This experiment is
originally interpreted in terms of the theory by Kivel-
son and Pokrovsky [14], in which a magnetic flux period
of hc/e* is assumed. This observed period is different
from the prediction we made above, in which the volt-
age periodicity of AV, = e*/C is expected. We have
two general comments concerning this point. First of
all, this experiment is performed with a variation of the
back gate voltage that acts on all electrons, unlike the
case discussed here where a local potential is varied. The
local potential in our case can be changed continuously
in a controlled way, whereas the impurity potential from
the donors arises from quantized positive charge, which
preferably attracts integral numbers of electrons. Sec-
ond, even in the case where the local potential can be
varied continuously, one has to be sure that the rate of
the variation is slow compared with the tunneling rate of
the quasiparticles, as discussed above.

We now consider a device with the same multiply con-
nected geometry, but for magnetic field at an even de-

nominator state v = ﬁ For concreteness, let us first

consider the fraction v = % The new CS particles in

this case are still fermions, but they do not on average
see a net field in the absence of a gate voltage. Thus
one can still speak of a Fermi surface for these CS par-
ticles, with a Fermi wave vector kr = (47n.)/2 = 1/lp,
where g = (hc/eB)'/? is the magnetic length at this fill-
ing factor [5]. The transport properties of these particles
are approximately the same as electrons in the presence
of random magnetic flux with a zero average field [5, 6,
8]. When a gate voltage is applied, the effective mag-
netic field for the CS particles in the hole region becomes
nonzero, with a value
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2C
b = —2¢06p = -C;Z¢0Vg. (4)

But here since we are still dealing with interacting
fermions, they do not have superfluid properties, but in-
stead have metallic (Fermi liquid) behavior.

Thus we can think of the present situation as an
Aharonov-Bohm geometry, where a small isolated “hole”
region has a magnetic field, whereas outside this region,
the CS electrons do not feel any magnetic field. The am-
plitude transmission coefficient for the single CS electron
wave function from one current terminal to the other can
be written for a sufficiently clean sample as

t~3 Ayexp (z /,, sa(x) - dx) , 5)

where p denotes Feynman paths for a single CS electron
wave function, A, denotes the amplitude for this path,
and da(x) is a vector potential for the 6b(x) field which
is nonvanishing only inside the hole region.

Using the Landauer formula o, o |t|?, we find, as-
suming that A, is a smooth function which we take as
approximately constant (semiclassical approximation)
[15,16],

. 6\ _ o Ssco5(276/0)
Oz ;60(;, cos (27r¢0> Onz 5,1 )

(6)
where ¢ denotes the flux from the 6b field enclosed by a
loop made from a forward Feynman path and a backward
one (see Fig. 1), and ¢, denotes the conductance of the
sample at zero gate voltage. Here we have assumed the
sample size L < Lg, where Ly is the phase coherence
length for the CS electrons, and we have made the rea-
sonable approximation that 6oy is a smooth function of
¢ that we may treat as a constant. Since the field 6b that
the CS electrons see is confined to an area A in the hole
region, the distribution of ¢ is centered around zero and
¢ = 2¢oCV;y/e. Therefore, when one plots the Fourier
spectrum of the resistance fluctuation as a function of
the voltage, one should see one peak centered around
zero, and another one centered around AV, = ¢/2C. We
remark that the use of semiclassical approximation here
is justified by the high mobility (> 10% cm?/V sec) of the
2DEG samples usually used in such experiments. When
scattering from impurities must be included, the form
of the Feynman paths becomes more complicated, but
the qualitative features of the AB oscillations remain un-
changed, provided that the sample size L < Ly, and the
area of the ring region is chosen to be small compared
to the area of the hole region, such that the “universal
conductance fluctuations” occur at a much larger field
scale [15].

We may estimate the value of this characteristic pe-
riod AV, as follows. It is known experimentally that
the change in 2DEG gas density is proportional to the
gate voltage by a constant of order 10! cm~2/V. Thus
the constant C/eA is of order 10! cm~2/V. This gives
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the characteristic cutoff Aharonov-Bohm period AV, ~
% x 0.1 V, for a hole region of size of order 1000 A x 1000
A. With the availability of the modern electron lithogra-
phy technique, a mesoscopic gate of this dimension is not
difficult to achieve experimentally. The condition that
the sample dimension as a whole be within the phase
coherence length is also not hard to satisfy, since at 100
mK type temperatures the phase coherence length Ly for
clean samples can be longer than 5 ym.

We can readily generalize our picture above to any
other even denominators v = ﬁ It is important to no-
tice that when one goes from one even denominator state
to another, e.g., from v = % to v = i—, the entire oscil-
latory function o;4(Vy) (for a given sample) should map
onto each other, with a simple rescaling of the horizontal
axis V; — —",-J'—Vg. Thus we see that the Aharonov-Bohm
oscillations at various even denominator fractional quan-
tum states should reveal intimately the Chern-Simons
flux parameter m = 1/v.
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