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We consider two-dimensional flow stirred by a small-scale, white-in-time random noise in the zero
viscosity limit. Numerical simulations show that, after a transient state, an inertial-range energy spec-
trum E(k) ~ k with x = —, ~0.05 is established by the inverse cascade process. This range grows in

time until a Bose condensate is formed at the largest scales in the system (k = 1). Prior to condensate
formation the statistics of velocity diflerences are extremely close to Gaussian, and only after Bose con-
densation strong deviations from Gaussian statistics are detected at small scales. The structures respon-
sible for this eA'ect are identified.

PACS numbers: 47.27.—i

High Reynolds number turbulent Aows are character-
ized by complexity, loosely defined as an intricate inter-
play of coherent and random dynamics. This makes the
theoretical description of strong turbulence a major
scientific challenge. The existence of coherent structures
living in a random, structureless background has been
demonstrated in numerous numerical and physical experi-
ments. Their role is manifested in strong deviations from
Gaussian values of the probability density functions
(PDFs) of various turbulence quantities such as
P(hu(r)), where hu(r) =u;(x+ri) —u;(x) and u; is the
ith component of velocity u(x). Although the dynamics
of the structures in turbulence have been a subject of in-
tense interest during the last decade, the mechanisms
governing their formation and behavior are not known.
The problem is that a typical experiment, numerical or
physical, deals with statistically steady Aows, character-
ized by several external parameters: The power of the
energy source e and the wavelengths k„k;, kp, and kd
corresponding to the system size, integral scale, energy-
input scale, and dissipation scale, respectively. To stabi-
lize the Aow, a viscous or other dissipation mechanism is
always assumed for compensation of the energy input. It
is clear that strong nonlinearity is necessary for structure
generation. However, the following question must be
asked: Is the nonlinear term solely responsible for strong
deviations from Gaussian statistics, or do these deviations
result from the combined action of nonlinearity and
external parameters? Another question to be addressed
is: What is the role of the largest, box-size eddies in
coherent structure formation? This question is not simple
since these eddies can, in principle, be responsible for
symmetry breaking, the dynamical consequences of which
are not addressed by a typical analytical theory of tur-
bulence. In this Letter we attempt to answer some of
these questions for the example of two-dimensional (2D)
Aow driven by a white-in-time random force.

We consider the Gaussian noise defined by the correla-
tion function

a(k' —k')
(f;(k, t)fj(k', t')) ec2e

d 6(k+k')8(t —t')
kd —2

=D(k) ~(t —t') ~(k' —k.') . (I)

Energy conservation following the Navier-Stokes equa-
tions leads to

J(k)—= —2v z E(z)dz~k
|)K+e„b(z —kp )dz

t
(2)

E(k, t) = Cthe k

—x+5/3 '
k

kp

k
k;(t) k;(t)

where the integral scale L(t) cck; '(t) and the dimen-
sionless scaling function P(z) I for z» I and p(z) 0
for z «1. We will assume that the variation of p(z) from

(3)

where J(k) is the energy flux and K(k) = ft, E(z)dz.
Equation (2) satisfies the natural boundary condition
J(k) 0 when E(k) 0 fast enough as k ~. In the
2D case there exists the additional law of enstrophy con-
servation. It is usually assumed that enstrophy conserva-
tion leads to a state of constant enstrophy flux J& for
k ) kp. This gives an energy spectrum in this region
E(k) =k with x) 3. Kraichnan's theory [I] yields
x =3 with logarithmic corrections, Safl'man [2] proposed
x =4, and the recent conformal theory by Polyakov [3]
gives x = 7', all satisfying the criterion governing the
direction of the enstrophy flux toward small scales. It can
also be shown that the energy Aux in this range is equal
to zero. On the other hand, in the interval k ( kp, the as-
sumption of constant energy Aux leads to the Kolmogorov
spectrum. Relation (2) gives that J(k) is a negative con-
stant, and thus that energy Aows from small to large
scales (inverse cascade).

In what follows, we wish to reduce the number of
external parameters that may be responsible for breaking
the symmetries of the Euler equations. Therefore we
consider scaling solutions in the limit of zero viscosity so
that kd is eliminated from the problem. Since fp J(k)
=0, one sees from (2) that a steady state is impossible
when v =0 because the total energy E (k, t ) = et ~ for
t ~. In this case, the most general self-similar solution
1S
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0 to 1 takes place in a narrow range z = 1, so that p(z) is
close to a step function. It also follows from the continui-
ty equation (2) that J(k) = —ey(k/k;)8( —k+kp), with
0(z) =0 for z & 0 and 0(z) =1 for z )0. In the interval
k;(t ) & k & kp, (5(z) = y(z) = l. Integrating (3) leads
to E(t) =et =C~e krak;

/ "(t), where C~ =C~
x fez ' rp(z)dz. Solving for k;(t) gives

' i/(2/3+ y)

k;(t) = (4)

which is similar to a relation derived by Kraichnan [1].
Assuming the existence of a stationary solution at k
))k;(t), relation (3) gives x = —', . The value of the ex-
ponent y must be determined from dynamical theory.
When k; (t ) k„energy accumulation leading to a
steepening of the energy spectrum is expected at the larg-
est scales which can, in principle, lead to Bose condensa-
tion, characterized by the energy spectrum E(k, t)
=b(t)8(k —I)'+C~e k, where C~ is the "Kolmo-
gorov" constant. In this case, a quasisteady state with
constant energy flux at the scales ko» k )& 1 can be main-
tained and the energy spectrum E(k) at these scales can
be close to the Kolmogorov spectrum. The possibility of
Bose condensation in 2D turbulence was discussed in an
extraordinary work by Kraichnan [1], and confirmed nu-

merically [4]. In 128 simulations, Frisch and Sulem [5]
observed the inverse energy cascade and concluded that
the exponent of the energy spectrum was close to the Kol-
mogorov value x =

3 . However, the statistical properties
and the dynamics of Bose condensation were not ad-
dressed.

To investigate the details of the dynamics in the inverse
cascade regime, we conducted direct numerical simula-
tions of 2D How in the limit of zero viscosity, driven by a

white-in-time Gaussian force. The simulations were per-
formed on the Intel Hypercube and Delta using a pseu-
dospectral code with 2048 Fourier modes to calculate
the stream function +(k, t) in a periodic square, where
the velocity u(k, t) is given by u& = —ik2+ and uz
=ik~+. The force was localized in the interval 500
~ ko ~ 525, and the superviscous dissipation term D
=6.1x10 k' u was used (in place of vk u) to stabi-
lize vorticity production in the region k & 600. It has
been thoroughly checked that the dissipation term was
negligibly small everywhere in the inverse cascade inter-
val 500&k. The initial condition u(k) =0 was used in

all our simulations. The results of the 2048 run are
presented in Figs. 1 and 2.

Figure 1 shows the time evolution of the energy spec-
trum. The early-time spectral distribution is E (k, t )

0=k, corresponding to weak nonlinearity. At intermedi-
ate times, the Kolmogorov spectrum E(k) = k " with
x = —', is established in the interval k;(t) & k & kp. As
predicted, the energy Ilux J(k) is a negative constant for
k;(t) & k & kp and the enstrophy IIux Jn(k) =0 for
k &kp. At all times the energy fiux J(k) satisfied (2)
and the energy spectrum was close to the prediction (3)
with x =

3 . Figure 2 exhibits the compensated energy5

spectrum k / E(k) at the last time in Fig. 1, representa-
tive of the intermediate times with spectrum E(k) ee k

k;(t) & k & kp. Using diA'erent exponents x we were able
to establish x =

3
+ 0.05 with Kolmogorov constant

Cg = 7.0. The most striking feature of the Aow is
demonstrated in the inset of Fig. 2, showing Sq —=((Au) )
and the normalized even moments F2„=((Au ) ")/
((d,u) )", n =2-4. The odd moments are small and will

be discussed in a future publication. The value of dis-
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FIG. 1. Time evolution (increasing upward)
20482 run.
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FIG. 2. Compensated spectrum k / E(k) for the last time
(solid curve) in Fig. l. Inset: The second moment of velocity
S2 and the normalized moments F2„, n =2-4.
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three-dimensional vorticity field for the latest time
reached in the 512 simulation. The maximum value of
vorticity increased by a factor of approximately 5 from
the time of condensate formation to the final time of our
simulation and reached the value co,„=25m„,. Figure
5(b) shows the velocity field corresponding to these vor-
tices.

To conclude, two unexpected phenomena were ob-
served in our numerical experiments. First, although the
energy spectrum prior to the Bose condensate formation
is described by the Kolmogorov relation corresponding to
strong nonlinearity, the statistics of velocity diAerences
do not deviate from Gaussian values (see Figs. 1 and 2).
We do not have a theoretical explanation of this fact,
though some dynamical considerations are as follows.
Let us assume that coherence is established as a result of
interactions between the small-scale eddies of size r and
velocity fluctuations of the integral scale L(t) ~k; '(t).
The characteristic time of the process is of the order of
the eddy-turnover time of the largest scales i; ~ k;
However, according to (4), this is exactly the time scale
of significant variation of k;. The even larger eddies, gen-
erated as a result of the inverse cascade, tend to reduce
the e%ciency of coherence generation. Only after long-
living large-scale Aow features are created as a result of
condensation can small-scale structures be formed. The
second unexpected result is that these small-scale struc-
tures are generated at scales of the order of the input

scale ko. We can see from Fig. 3 that at all scales
I))ko, the deviations from Gaussian statistics are negli-
gibly small even after formation of the condensate.
Moreover, as can be judged from Fig. 4, the range of
scales where the deviations are largest becomes narrower
with time, concentrating in the vicinity of k = ko. At
present we can only speculate about the dynamics of the
structure generation and the significance of the input
scale. The supercondensation processes considered in [6],
dealing with the dynamics of an equilibrium ensemble of
point vortices, might give some clues to understanding the
results found in this paper.
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