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A rigorous hydrodynamic theory of the A-B transition is presented. All dissipative processes
are considered. At low interface velocities, those occurring on hydrodynamic length scales, not
considered hitherto, are most probably the dominant ones.

PACS numbers: 67.57.—z 68.10.—m

The A ~ B transition of superfluid 3He is rather re-
markable. If undercooled suKciently, it takes place with
a spectacularly fast rate, and is accompanied by magnetic
signals that can only be called bizarre [1]. However, no-
one was left wondering about the damping mechanism,
as Yip and Leggett [2] instantly identified it: The su-
perfluid order parameter varies rapidly within the inter-
face, transforming one phase into the other. This'scat-
ters quasiparticles (Andreev scattering) and constitutes a
restoring force. The balance between this and the driving
force Ap (the difference in chemical potential of the two
phases) yields a terminal interface velocity u that can be
compared with experimental data [1]. Further and more
detailed microscopic calculations [3] confirmed Andreev
scattering as the source of damping; also, the magnetic
signals were recently deciphered [4].

All this, one should think, holds for the hypercooled
regime, with an undercooling e—:1 —T/T~Is + 0.5%.
With s smaller, the latent heat would warm up the B
phase, and render it thermodynamically unstable again.
So u is much slower and limited (instead of by Andreev
scattering) by how efficiently the latent heat can be re-
moved from the interface region (a difficult, nonlocal
problem notorious from more mundane interfaces such
as snow flakes). This is quite wrong: In superfluid sHe,
there is neither a transition regime limited by heat trans-
fer, nor a sudden onset of hypercooled phase transition.
Rather, it is the second-sound velocity c2 that separates
two different types of transitional behavior. For u (( c~,
or e & 2%, second sound is very efficient in removing the
latent heat, which therefore cannot be the limiting fac-
tor. What is more, phase coherence across the interface
equalizes the chemical potential, eliminating Ap as the
driving force. A hydrodynamic consideration [5] shows
instead an interface driven by AT and damped by the
Kapitza resistance. Curiously, the growing B phase is
in this regime of "phase-coherent transition" colder than
the receding A phase. When u greatly exceeds c2, start-
ing a« =(20—30)%, second sound is in comparison too
slow to transfer appreciable amount of heat. Only then
does the original scenario of hypercooling reemerge.

Following all the microscopic theories [2, 3], the hy-
drodynamic consideration [5] also contains the starting
assumption that the dissipation accompanying the A-B

transition occurs within the mean free path (f of the in-
terface, and that no dissipative temperature variations
exist on hydrodynamic length scales. This universal as-
sumption is most probably incorrect. To understand why,
we first examine the case of a stationary interface be-
tween superfluid He and a vessel wall, through which
heat but no mass is transferred. Generally, the effective,
measured resistance here is the sum of two contributions
[6], r, = r + r, . The first accounts for the micro-
scopically fast drop 4T across the interface, the second
stems from the "sq mode, " a hydrodynamically slow vari-
ation 6T exp( —~2:~/A, ~) in the superfluid. Because of the
enorinous extent of the decay length (A,~ Tf/T, is at
least 250 times the mean free path, usually much larger)
the effective resistance K, is dominated by K, [7]. Con-
sequently, 6T && AT. Going back to the moving A-B
interface, it is clear that something akin to the sq mode
could also exist there. As we shall see, this is indeed the
case. And since this (what we continue to call) sq mode
has, for u (( c2, essentially the same spatial extent, it is
here probably also the dominant source of dissipation.

What is more, there is some indication that, inde-
pendently, AT ~ 0. Recently, Schopohl and Waxman
[8] considered a moving interface, between the A and B
phase that are in equilibrium otherwise. In contrast to all
previous microscopic calculations [2, 3] that are perturba-
tive in essence, they have obtained an exact solution, in
the ballistic limit, with an essential singularity at u = 0.
Amazingly, they found this motion to be (up to a fairly
high critical velocity) little damped [9]. As will be shown
below, the immediate consequence of this is a diverging
Kapitza conductance, and LT ~ 0 for u &( c2. In other
words, if this finding can be veriFied, Andreev scattering
as a dissipative source is eliminated altogether, while the
hydrodynamic variation of temperature and counterflow
becomes the only mechanism to prevent the transition
rate u from diverging.

In this paper, we present the general hydrodynamic
theory of the A-B transition. All dissipative mechanisms
that may occur are considered. Despite a rather different
language, they include collisions and scattering of quasi-
particles, both among themselves and at the interface.
More specifically, we derive the general boundary con-
ditions connecting two strongly coupled superfluids and
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FIG. 1. The temperature field for u « c2, as in Eq. (la). FIG. 2. The temperature field for u )) c2, as in Eq. (2a).

calculate the temperature and counterflow fields. Al-

though the hydrodynamic theory is never complete by
itself, our results do provide a rigorous framework for
the more detailed, and rather more complicated, micro-
scopic theory. In fact, the latter is essentially reduced to
the calculation of three Onsager coeKcients.

Concrete results are obtained for the two limits u (( c2
and u )) c2. In the first case of slow, phase-coherent tran-
sition, the general temperature variation contains two
exponential decays 6T, exp( —ixi/A, q) in the respective
phase, and a discontinuity AT at the interface (2: = 0); cf.
Fig. 1. While 6'T+ stern predominantly from collisions

among quasiparticles, LT accounts for their scattering
at the interface. (The counterflaw is not independent,
Av 6T .) The decay length A,~ is a function
of known bulk coefficients; to lowest order in u/cq it is
equal to the decay length, mentioned abave, of sHe close
to a vessel wall, and hence large. The interface motion
is damped by a total, effective Kapitza resistance, which
is a series of three consecutive resistive elements, each
causing one of the temperature drops. The amplitudes
of these are determined by three Onsager coeKcients, un-
known in size. So it is these three numbers that need to
be calculated, or measured. Until now, it was assumed
that 6T, + = 0, leaving AT to account for the total dissi-
pation. If, conversely, LT is negligible as mentioned, one
may (for lack of better knowledge) assume 6T+ = 6T+.
Then the total Kapitza resistance depends only on one
parameter, which can be determined from the experimen-
tal data on u, as we shall do.

If u && c2, the varying fields of the temperature and
counterflow bT&, 6m&+ are independent, diffusive, and
decay only into the A phase; cf. Fig. 2. The decay length
is smaller by the factor c2/u. Neither the temperature
nor the chemical potential is continuous across the in-
terface; AT, Ap P 0. There is no special reason why
AT should be much larger or smaller than bT& . The
interface motion is damped by a total growth coeKcient
which, however, contains additive as well as multiplica-
tive contributions.

It is noteworthy that all the results of Ref. [5] remain
asymptotically valid (i.e. , for distances from the inter-
face that are large campared ta all decay lengths), if

one substitutes the respective resistance with the total
Kapitza and growth resistance obtained here. As will
be explained in detail below, this is connected to the
fact that one can consider an effective interface, hydro-
dynamically wide, that includes all the temperature and
counterflow variations; cf. the dotted lines of Figs. 1 and
2. Then, of course, the original assumption that dissipa-
tion takes place only within the interface is again correct.
In this work, for lack of space, we do not consider the ef-
fects of lateral walls, which lead to an R dependence of
the terminal velocity u, as observed [1].

An interface in motion can be viewed as condensate
and quasiparticles traversing the interface. It is plau-
sible that the condensate should not be damped. But
the Schopohl-Waxman solution [8] shows that even the
quasiparticles are little damped in equilibrium, despite
considerable Andreev scattering. This is a surprising re-
sult, and as the following arguments show, has direct
bearing on the nonequilibrium properties of the interface:
Usually, the temperature establishes itself on the scale
of the mean free path (f, and the temperature gradient
V'T has a hydrodynamic scale much larger. However,
across a strongly resistive obstacle of microscopic dimen-
sion ( « (f, the change in the temperature will be on the
same scale ( and can be hydrodynamically accounted for
as a discontinuity AT. The A Binterface, w-ith a width

of order correlation length (, « (f, was taken as just
such a microscopic obstacle [2,3]. And its resistivity (out-
side a very narrow range next to the normal-superfluid
transition) would come mainly from Andreev scattering
of ballistic quasiparticles. If this is indeed inoperative in

equilibrium, it cannot turn into a strongly resistive mech-
anism ever so slightly off equilibrium. The temperature
gradient will therefore have normal, hydrodynamic val-

ues, and KT = (fV'T vanishes. A more formal line of
arguments that shall be published elsewhere leads to the
same conclusion. Further away from equilibrium, when u
becomes comparable to, or much larger than, the second
sound velocity cs, Ap builds up across the interface [5].
This wouM constitute the microscopic obstacle lacking at
u (( c2, and an accompanying LT can no longer be ruled
out by the same argument.

We start our hydrodynamic consideration with the
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general solution that is stationary in the rest frame of the
interface. For both u « c2 and u )) cz, we may linearize
the hydrodynamic equations [10] as in Ref. [5], with re-
spect to the variables (i) iv =—p, (v„—v, )/p„= v„—g/p
and (ii) T ' —T, , the deviation of the temperature in
the respective phase from the initial temperature T, . Re-
taining terms of first order in u/c2, the solution (in both
phases) for u « c2 is

T ' = T, + bT2 ' + bT, ' exp(~2:/A, q),
2 T

l

p~AB
o

A, B

(la)

(lb)

Notations and explanations: Upger sign refers to the
A phase, here and below. 6T& ' . amplitude of the
second-sound step function in the respective phase [5].
Although the steps are at +c2t, t ~ oo must be set,
since Eqs. (1) display the stationary solution. (Here
and below, if the context is clear, the superscripts A
and I3, e.g. , in czA, will be suppressed )6T. A +: am-
plitude of the sq mode, source of hydrodynamic dis-
sipation and resistance. o". entropy per unit mass,
~~ =a~/OT X.", =. 2(&~X )'~'~(&~+X )u/c, : the
sq decay length for a moving interface, Az = Ir/2c2pToz,
A~ = [(4/3)il —p((i + (4) + (2+ p (s]p, /2pp„c2, where
the heat conductance k and the viscosities il, (i 4 are
defined in the usual way [10], neglecting the anisotropy.

The solution for u )) cq is, to lowest order in c2/u,

T =T~+bT, T = T;+bTd exp( —u2:/2c2Az),

(2a)

(2b)iv~ = bu)~, urA = b'av,
A exp( u2:/2c—gA ) .

AQ =Ag = A(p+ ~+ ~D) = 0,
A&p—:—A(y, +v„v, +z~) = 0,
R, = (f)AT + gA(p+ z~)

+ A(v„(sr+ vrD —pz )) .

(3a)
(3b)

(3c)

(p: pressure; vr: the nonlinear part of the stress ten-
sor, x its dissipative part; z: dissipative part of the
Josephson equation. ) Equations (3) reduce to the expres-

bT& and bmd are, respectively, the diffusive modes of
a moving interface [ll]. Next order terms in c2/u mix
these two modes.

Each of the four amplitudes of Eqs. (1,2) is to be deter-
mined in conjunction with u from boundary conditions,
better: connecting conditions (CCs). The general struc-
ture of the CCs depends, as do bulk hydrodynamic the-
ories, only on the conserved quantities and the sponta-
neously broken symmetries on both sides of the interface
[6]. In our case, the CCs are given by the continuity of
the fIuxes for energy, mass and momentum, the phase co-
herence across the A-B interface, and the surface entropy
production rate R, . These are, respectively,

=
2 [+A~i(~) —(u/c. )A~/(~~)]'

»A, = ~~ '
[-,'AS /(~) + (u/cz)(~)/(~~)]'

cz(oz)Ap,

) 2(o.)2

—2K

&(~A'+ ~~')~+ «2(~~)'

(5a)

(5b)

(5c)

The extended part bT2 ' of the temperature Geld

agrees with that of Ref. [5], in which the dissipative terms
were neglected. To understand why this is not an acci-
dent and what the essence of the new information here
is, we need to address the concept of the effective CC.
Since the CCs are, as emphasized, quite generally valid,
we have a certain discretion towards the choice of the in-
terface width: It can be either microscopic, of order (y,
or it can be hydrodynamic, somewhat larger than A,q.
Equations (4), such as they stand, are the proper CCs
for the microscopic interface. It provides complete infor-
mation on u, the hydrodynamic fields from x = +0 to
Woo, and their discontinuities across the interface, e.g. ,

AT = hTg + bT, —6T2A —6T, ; ef. Fig. 1 and Eq. (la)
for z = 0. The CCs of the macroscopic interface (dotted
lines in Fig. 1) are simpler in three aspects: First, since
it is thicker than the sq decay length A,q, it ends in a re-
gion where the dissipative terms are small and can be ne-

glected. Second, eliminating dissipative terms especially
simplifies B, and reduces the number of CCs, commensu-

sions of Ref. [5] if one excludes dissipative terms (with su-
perscript D). All quantities are defined in the interface
system; ( ) and A denote average and difference across
the interface, and all suppressed indices point along the
interface normal. Neglecting Ap/p 10 s and for time
scales slow compared to first sound velocity, g = —pu
holds and Ag = 0 is always satisfied. Linearizing the
other CCs, for the weakly supercooled case u && c2, with
respect to io, u, and AT, we obtain

Af=0, A(p+~ )=0, A(p+z )=0, (4a)

(f)= AT, .„" =+, ( -p )" (4b)

Equations (4b) are the Onsager relations that follow
from R, of Eq. (3c). The last two CCs are new: Ne-

glecting dissipative terms, they would vanish (first in R,
and hence altogether). Positivity of entropy production
requires nA ~ ) 0; the cross terms, such as v„AT in
B„are neglected for simplicity. The values of o,~ B de-
termine the rate of dissipation both within the interface
(contribution to R, ) and outside (contribution from the
sq mode). The latter with a vastly larger width A,~,
dominates.

We expand Eqs. (4) around T, and denote all ther-
modynamic quantities at that temperature. To dis-
tinguish, a square bracket with index i is added, e.g. ,

[Ay], —:p~(T~, p, ) —pA(T;, p, ); while in Eqs. (4a)
Ap = pB(TB, pB) —pA(TA) pA). Wl'tll ck =—DC2ppn/ps+
(Az /A~), the results are
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rate with the fact that only bT2 ' need to be determined.A, B

Third, the effective discontinuities across the wider in-
terface include the sq decay, e g . , .A, T = bT2 —bT&,
cf. Eq. (la) for ]x )) A,~. Equations (4) with these
three modifications incorporated reduce to [12] 6,f = 0,
A, p, = 0, (f), = K,A, T, with an effective Kapitza con-
ductance K, . They constitute the effective CCs for the
hydrodynamically wide interface, and are in fact the very
CCs employed in Ref. [5] to obtain bT2 ' and

—pu = r, Ap/(o. ) (6)

The sq decay was hence implicitly included as a source
of interface dissipation. These previous results therefore
remain valid, and the new information provided by the
CCs, Eqs. (4), can be seen by comparing these results
with Eqs. (5), yielding an expression for K,

(Ke —2pc2(&T)g) = K + ) (Apc2(OT)i)
A, B

(7)

g = K[(o)AT + A(pp + zD)],
(f ) = PAT, u„= —ng(z. D —pz~)~,

(8a)

(8b)

where po is the chemical potential for a given tempera-
ture and pressure in a system with v„= v, = 0, and
f the dissipative part of the entropy current. The
effective CCs are given by A, Q = 0, A, p = 0, and
g = K,((o),A, T+ A, pp). A's partly reported in Ref. [5],
the latter lead (again via an expansion around T,) to

b'T = —[(d pp+ Td o)/Toz~], ,

pu = K, Lpo ——AobT

bw = (p, /p„u) App —cr bT—

(9a)
(9b)

(Qc)

The second equation is valid including (bT+)2. The

The total effective resistance K, ~ has four constitut-
ing elements: The three in series are on the right hand
side: one microscopic and two sq contributions. The lat-
ter become maximal for n~ ~ ——0, i.e. , if the sq am-
plitudes are maximal. The fourth resistive element, on
the left of Eq. (7), is circuited in parallel to the other
three. It stems from emission of second sound which
rids the interface of latent heat independent from heat
transfer across the interface. Therefore, this term en-
ables phase transition even if the actual conductance e
vanishes. (Since its contribution is numerically small, it
was not, but should have been, displayed in Eq. (5) of
Ref. [5].) As discussed above, the actual resistance 1/r.
is most probably negligible. The experimental data [1]
on u then imply 6~ ~ = 8 x 10, if we take n~ = o~ for
lack of better knowledge.

For u )) c2, the same double approach of actual and
effective CCs applies. From B, of Eq. (3c), we obtain
(each to the lowest order of m/u and neglecting cross
terms)

proper CCs for the microscopic interface, Eqs. (3a,b), (8),
provide the additional information

1 (1 C' 1 1 hg&T+
K (K P p2n 2

A

pp~' " 2
bu)d ——A

(10a)

(10b)

if o. and P are such that bw& (( u, bT+ —OT&~ ('( bT+.
(Otherwise, the hydrodynamic dissipation would be too
large for the experimental data [1].) C—:—

2 ([crA /(AT-
A ) —26a]oT); b'T . In the first factor of K, i, three
resistive elements are in series: the first two are micro-
scopic in origin, from Ap and AT, respectively; the third
is from n diffusion; temperature diffusion gives rise to the
second factor.
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