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We derive the fully relativistic Ohm’s law for an electron-positron plasma. The absence of nonresis-
tive terms in Ohm’s law and the natural substitution of the four-velocity for the velocity flux in the rela-
tivistic bulk plasma equations do not require the field gradient length scale to be much larger than the
lepton inertial lengths, or the existence of a frame in which the distribution functions are isotropic.

PACS numbers: 52.60.+h, 52.30.—q, 95.30.Qd

For a plasma, Ohm’s law describes the relation be-
tween the induced current and the plasma electric field.
For an ion-electron plasma, the field depends on resistive,
inertial, and Hall effect contributions. The result is usu-
ally derived for the nonrelativistic limit in the Boltzmann
picture [1]. Ohm’s law plays a direct role in the magnetic
induction equation used in the description of bulk plasma
dynamics.

Relativistic plasma models have been effective in ex-
plaining the observations of relativistic astrophysical jets
and winds [2]. Such models have generally employed the
relativistic continuity equation as a vanishing four-
divergence of the bulk four-velocity, and Ohm’s law as a
simple bulk four-vector generalization of the nonrelativis-
tic equation [2,3].

We shall see that for a two-component relativistic plas-
ma composed of different mass particles, the natural use
of these magnetohydrodynamic (MHD) forms for the
continuity equation and Ohm’s law requires the existence
of a reference frame in which both distribution functions
are isotropic in momentum. The constraint results from
the nonlinear relation between momenta and velocities in
the relativistic regime.

This requirement is nontrivial because distribution
function isotropy also requires the plasma under study to
be microinstability saturated; otherwise microinstabilities
could grow because of distribution function anisotropy.
Yet, evidence for the presence of anisotropies and mi-
croinstabilities in relativistic winds has come from obser-
vations of the Crab Nebula [4]. In particular, the Weibel
instability has been suggested to explain the presence of
wisps downstream from relativistic shocks [5]. Anisotro-
pies downstream from relativistic shocks are likely
present in jets as well [6].

Depending on density and temperature conditions, an-
isotropies in relativistic plasmas may also arise from an-
isotropic radiation onto a plasma, such as in coronae of
stars or in models active galactic nuclei (AGN) for which
a pair atmosphere forms [7]. The impinging of winds and
jets onto ambient media also produces anisotropies [8].

In this paper we show that in contrast to an ion-
electron plasma (1) only a resistive contribution to Ohm’s
law for a relativistic e *-e = plasma is relevant under
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quite general conditions and (2) anisotropy in the distri-
bution functions need not affect the form of the unper-
turbed relativistic bulk equations for the pair plasma.
Thus, relativistic bulk dynamics for pair plasmas which
exhibit evidence for microinstabilities are appropriately
described by the relativistic MHD formalism, whereas
ion-electron plasmas which exhibit such instabilities are
not.
The Boltzmann equation is given by

af/at + l'iaif+ Fiap,f= [Alf]coll + [Atf] radiat

+ [Alf]crcalion + [Alf]annihilation s
Q)]

where v’ is the particle velocity, p’ is the particle momen-
tum, ¢ is the time, F' is the electromagnetic force (since
we ignore gravity), f=f(x,p,?) is the scalar distribution
function, and the terms on the right are schematic. The
cross sections present in the last two terms are approxi-
mately equal for relative lepton velocities ~c¢ [9], and it
is reasonable to assume these contributions are in equilib-
rium. We shall also assume that collisional losses dom-
inate synchrotron radiation losses, which is acceptable for
[10]

d|pl/dt|synch/levx B| < 10 ~'6y2Bsing , )

where 7 is the particle Lorentz factor, ¢ is the pitch an-
gle, e is the positron charge, and B is the magnetic field
measured in gauss.

Define the plasma quantities, number density,

ne=ffsexp0dp, 3)
and velocity flux density,
ol =fv'£fi(x,p,t)d3p=ni<l*i¢), 4)

Adopting the signature (+, —, —, —), we then have the
flux density four-vector ¢4 =(cn +,¢% ) and current den-
sity four-vector j*=e(¢4% —¢~). The energy and
momentum densities are the (00) and (i0) components of
the symmetric kinetic tensor given by

K% =ft'iipl‘ifi d3p=n+('+phk) (5)
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and
6)

is the momentum density of either positrons or

0“"(E+ eIy ),

where T
electrons.

Quantities without the =+ shall refer to the plasma as a
whole—the sum of the component contributions. We re-
quire the existence of a proper frame moving with four-
velocity U, in which the charge density, the velocity flux
density, and the momentum density vanish. We denote
quantities in this frame with a superscript asterisk. For an

e T-e ~ plasma this means
j¢ =e(ni —n%t)=0, (7a)
¢™* =0, (7b)
and
™ =m,(n*/2) Cy+vi)* +{y_v)*) =0. (70)

Since K,, has ten independent components, we can write

Ki =Pl +AL,, ®)
where the symmetric tensors P,, and A,, satisfy

P =Ps;, Poi=0, Pgo=€* 9)
and

A, =0. (10)

In (8)-(10), P is the scalar pressure and 4% has five in-
dependent components that measure anisotropy.
Finally, define the four-vector H* by

an

where p* is the proper frame rest mass density. For a
pair plasma this becomes

HE=12/(m++m )]p*U* = (m 4ot +m—¢* )],

palr (l/me)[P U"—me((b”)] (12)

Thus from (7b), Hpi: vanishes. But H3% =0 by def-
inition, so Hpa,r =0. Since H},;, is a four-vector, the van-
ishing of Hpalr implies that H},; =0 in all frames. Note
that H** measures the heat flux density per unit mass in
the proper frame, so we shall call H* the heat flux density
four-vector.

The procedure used to derive Ohm’s law for a relativis-
tic pair plasma is as follows: (i) First we obtain a “resis-
tive” type collision term appropriate for a nearly col-
lisionless relativistic pair plasma. (ii) Second, we relate
this to the current density. (iii) Finally, a subtraction of
the momentum density equations for the positrons and
electrons yields the desired result.

nr-=v¥(n*e) "lc~
—yre*(en*) "V —2yF~
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We can find the value of the momentum density in any
frame by Lorentz transforming the stress-energy tensor.
The result is

Il =c’me(n+Culs)+n—(u))

=33 (P+e*)Vic '+ 4%, (13)

where u’ is a spatial component of the particle four-
velocity, Viis a component of the bulk three-velocity, yy
is the bulk Lorentz factor, and the anisotropy term is
given by

Ao =AJU+UU'AZU Y (yp+1) . (14)

Note that since the proper frame four-vector A***U¥ =0,
we know that it is zero in all frames. Thus A;o=A; UX
and (13) can be written

Il =c2m,(n+{uly)+n(u))

=y (P+e*)U'+AYU; . (15)
Inverting (15) we obtain
Ve V=U'=[c2m.(n+ (') +n _(u'l))
— AUy (P+€*). (16)

The average four-momentum gains from collisions in

the proper frame are given by
= —Ap"* =(m,/2) (u’)* —(u)¥*) . amn

The approximate proper frame pair plasma collision term
is then

(n*vE/4)Ap¥¥

ApH¥

=—(n

*vE/a)Ap**
=p{_=—pr*

o, (18)

where v is the proper frame collision frequency.
Equations (12) and (16) give

mec(n4ult)+n—(u)) —cAU; =y, (P+€*)n*
x(p=+¢4).  (19)

Now in the electron frame, we have

AT —[eATU I T =4SP+ e*)n* "1l (20)

and in the positron frame

ME) —[c AU P =y (D(P+e*In* "1 . 1)

Transforming (20) and (21) to the proper frame, sub-
tracting, and using (7) and (18) gives

H(P+e*)(n*e) 'y 2(yc +1) T s (en*c) T24 yX +1]

vE(II} — ™) =2P% =n*en, ;™ (22)
J where the effective resistivity 7, is given by
yEHE+1) THn*e) T2k P} (23)
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and yZ is the Lorentz factor corresponding to the velocity
(n*/2) "lo¥ = —(n*/2) "'o™* =j*fen* . (24)

We have used the four-vector indices in 7, since j§ =0.

Equation (22) suggests that we subtract the momen-
tum equations for the electrons and the positrons to ob-
tain Ohm’s law. This is standard in the nonrelativistic
case, but is only fruitful in the relativistic case because
Hgair =0.

The ith component of the proper frame relativistic en-
ergy momentum tensor for positrons, as obtained from
the first moment of the Boltzmann equation, is given by

Aol = — u KK* —e(n*/2)E™

—le{vy/c)xBI* +Pi_ . (25)

Subtracting the analogous equation for electrons, and us-
ing (8), (18), and (22) we get

E*'=n,j" —m.cQep*) 719, (A4* — 4%*)
—dol(n,/v¥)j™*]. (26)

The requirements (7a) and (7b) which led to (26) are
assumptions about the zeroth and first moments of the
Boltzmann equation. If we further assume that

AT =40* Q7
the second term on the right-hand side of (26) would van-
ish. Then, in the steady state, we would be left with

E*'=n,j™*. (28)

Note that the dependence on the current in (28) results
from (22). The latter follows, for example, even in the
Fokker-Planck approximation if, as in our case, the
charge density vanishes in the proper frame. In addition,
note that none of the assumptions that led to (28) require
the existence of a reference frame in which the distribu-
tion functions of positrons and electrons are isotropic.

In a general frame, (28) becomes

F¥U,=n,j*+jU.U*, (29)

where we have added a convection term. Equation (29)
resembles the magnetofiuid relation [11]. Here, however,
the effective resistivity 7, depends on a scalar function of
the current and momentum density of the plasma com-
ponents. This dependence is eliminated when we choose
the coordinate axes such that the proper frame velocity
lies on a principal axis. In addition, y¥ factors out of

(23) and we have
nr— 0P =v¥c "2(n*e) T2H2(P+€*) — ¥}
=v¥c " 2n*e) T2QP+€%), (30)

where the superscript (pr) indicates that the current flows
along a principal axis.
Note that unlike the Ohm’s law for an ion-electron

plasma, there are no Hall effect or pressure contributions
to (29). The vanishing of the bulk Hall effect term is the
result of an effectively zero net particle gyration frequen-
cy; the sum of the electron and positron contributions
vanishes due to opposite streaming of positrons and elec-
trons around the field lines. The vanishing of the pressure
term results because our assumptions have appealed to
the mass symmetry of the problem, eliminating diffusion.
The Hall effect and pressure terms are negligible for an
ion-electron plasma only when Ag>>A; and A >> A, re-
spectively, where Agg is the length scale of the field gra-
dients, A; is the ion-inertial length, and B is the ratio of
thermal to magnetic pressure.

The vanishing of the heat flux, which led to (22), is
also the condition which allows substitution of the bulk
four-velocity components for the bulk four-flux com-
ponents in the plasma continuity equation. The point is
that the usual integration of (1) over momentum gives
9,¢" =0, so substitution of the four-velocity for the four-
flux ¢ requires H¥*=0. If H*#0, then this substitution
would produce an inhomogeneous equation. Because
m+>m—, for a relativistic ion-electron plasma, H**
only naturally vanishes if both distribution functions are
isotropic in the proper frame. This is true whether or not
the proton component has a relativistic temperature.

Note that H* vanishes for any two-component plasma
in the nonrelativistic limit. To see this note that

H* < —mini i )*+ —m_n®io)*
=meni(ysoh =o' ¥ +monE(y_ol —0vL)*
(&)

where the second equality follows since the proper frame
momentum density vanishes by definition. Thus when
n% =n*, (31) vanishes when y+ =y_ =1. Therefore H*
vanishes by the argument that follows Eq. (12).

Finally, note that our proper frame result is not the full
nonrelativistic limit, because of the relativistic tempera-
ture. In the nonrelativistic limit, we have the additional
result that the pressure drops out of (23) and that
e* =n*myc?so

(32)
(33)

P — n=ven*myc?/(n*ec)?

—_ * 2 * 2
=meve/n* e =2ppirve/n*e’,

where 7 is the nonrelativistic resistivity and pp.ir= me/2 is
the reduced mass for the pair plasma. Equation (33) is
the usual nonrelativistic result. In the case of a nonrela-
tivistic ion-electron plasma, ppair is replaced by e
=mim./(m;+m,) ~m,.
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